Multi-sensor data fusion method based on divergence measure and probability transformation belief factor

被引:2
|
作者
Hu, Zhentao [1 ]
Su, Yujie [1 ]
Hou, Wei [1 ]
Ren, Xing [1 ]
机构
[1] Henan Univ, Sch Artificial Intelligence, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Dempster-Shafer evidence theory; Divergence measure; Probability transformation belief factor; Belief entropy; Multi-sensor data fusion; DEMPSTER-SHAFER THEORY; FUZZY ROUGH SET; COMBINATION; SPECIFICITY; ENTROPY;
D O I
10.1016/j.asoc.2023.110603
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dempster-Shafer evidence theory is widely used in multi-sensor data fusion. However, how to manage the counterintuitive result generated by the highly conflicting evidence remains an open question. To solve the problem, a novel multi-sensor data fusion method is proposed, which analyses the credibility of evidence from both the discrepancy between evidences and the factors of evidence itself. Firstly, a new Belief Kullback-Leibler divergence is put forward, which evaluates the credibility of evidence from the discrepancy between evidences. Secondly, another credibility measure called the Probability Transformation Belief Factor is defined, which assesses the credibility of evidence from the evidence itself. These two credibilities are combined as the comprehensive credibility of evidence. Furthermore, considering the uncertainty of evidence, a new belief entropy based on the cross-information within the evidence is presented, which is applied to quantify the information volume of evidence and to adjust the comprehensive credibility of evidence. The adjusted comprehensive credibility is regarded as the final weight to modify the body of evidence. Finally, the Dempster's combination rule is applied for fusion. Experiment and applications show that the proposed method is effective and superior. & COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] A Method Based on Multi-Sensor Data Fusion for Fault Detection of Planetary Gearboxes
    Lei, Yaguo
    Lin, Jing
    He, Zhengjia
    Kong, Detong
    SENSORS, 2012, 12 (02) : 2005 - 2017
  • [32] A Method Based on Multi-Sensor Data Fusion for UAV Safety Distance Diagnosis
    Zhang, Wenbin
    Ning, Youhuan
    Suo, Chunguang
    ELECTRONICS, 2019, 8 (12)
  • [33] Population estimation based on multi-sensor data fusion
    Lu, Zhenyu
    Im, Jungho
    Quackenbush, Lindi
    Halligan, Kerry
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (21) : 5587 - 5604
  • [34] Multi-Sensor Data Fusion Method Based on Self-Attention Mechanism
    Lin, Xuezhu
    Chao, Shihan
    Yan, Dongming
    Guo, Lili
    Liu, Yue
    Li, Lijuan
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [35] A novel identification method of obstacles based on multi-sensor data fusion in forest
    Jinhao, L. (liujinhao@vip.163.com), 2013, International Frequency Sensor Association, 46 Thorny Vineway, Toronto, ON M2J 4J2, Canada (155):
  • [36] Research on the method of data fusion orbit determination based on TDRSS and multi-sensor
    Pan, XG
    Zhao, DY
    Zhou, HY
    Liu, J
    ICEMI 2005: Conference Proceedings of the Seventh International Conference on Electronic Measurement & Instruments, Vol 7, 2005, : 198 - 203
  • [37] Research on Equipment Fault Diagnosis Method Based on Multi-sensor Data Fusion
    Ma Bin
    Hao Linchong
    Zhang Wanjiang
    Dai Jing
    Han Zhonghua
    INTELLIGENT SYSTEM AND APPLIED MATERIAL, PTS 1 AND 2, 2012, 466-467 : 1222 - 1226
  • [38] A bionic manipulator based on multi-sensor data fusion
    Qian, Chenghui
    Li, Xiang
    Zhu, Jianfeng
    Liu, Tao
    Li, Ruilin
    Li, Bingyang
    Hu, Mengyuan
    Xin, Yi
    Xu, Yang
    INTEGRATED FERROELECTRICS, 2018, 192 (01) : 10 - 15
  • [39] A New Engine Fault Diagnosis Method Based on Multi-Sensor Data Fusion
    Jiang, Wen
    Hu, Weiwei
    Xie, Chunhe
    APPLIED SCIENCES-BASEL, 2017, 7 (03):
  • [40] Accurate Measurement Method of Drilling Depth Based on Multi-Sensor Data Fusion
    Yao, Yafeng
    Yao, Ningping
    Liang, Chunmiao
    Wei, Hongchao
    Song, Haitao
    Wang, Li
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2022, 26 (03) : 367 - 374