Microfluidic-oriented assembly of Mn3O4@C/GFF cathode with multiscale synergistic structure for high-performance aqueous zinc-ion batteries

被引:13
|
作者
Li, Chang [1 ,2 ]
Hu, Chaoquan [1 ,2 ]
Song, Yang [1 ,2 ]
Gao, Ning [1 ]
Yang, Weisheng [3 ]
Xu, Xuebing [1 ,2 ]
机构
[1] Nanjing IPE Inst Green Mfg Ind, Nanjing 211135, Jiangsu, Peoples R China
[2] Inst Proc Engn, Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Beijing 100190, Peoples R China
[3] Nanjing Forestry Univ, Coll Mat Sci & Engn, Nanjing 210037, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc -ion battery; Microfluidic assembly; Freestanding cathode; Multiscale synergistic; Long-term stability; OXIDE; MNO2; CAPABILITY; MN3O4;
D O I
10.1016/j.carbon.2023.03.058
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The electrochemical activity and long-term stability of cathodic materials, as well as active ion transport, are key factors for efficient energy storage in aqueous zinc-ion batteries (ZIBs). Here, a freestanding Mn3O4@C nanowireimplanted graphene-based fiber fabric (Mn3O4@C/GFF) cathode with a multiscale synergistic structure was fabricated using a facile microfluidic assembly method. In this architecture, Mn3O4 nanowires are hosted by a conductive carbon layer and then anchored in the interlayer of a self-assembled graphene-based fiber framework. The hierarchical structure enhances electrical conductivity and relieves ion leaching, thereby boosting the electrochemical activity and long-term stability of cathodic materials. Furthermore, the layer-by-layer assembled structure of the Mn3O4@C/GFF cathode provides ample available channels for active ion transport, accelerating the electrochemical kinetics. Consequently, the Mn3O4@C/GFF cathode exhibits enhanced electrochemical performance with a high capacity of 374.8 mAh g-1 at 0.2 A g-1 and ultralong cycle life (158.7 mAh g-1 retained over 5000 cycles at 2 A g-1). Therefore, this study provides a multiscale synergistic strategy for fabricating advanced cathodes for high-performance ZIBs.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
  • [31] NaV6O15 microflowers as a stable cathode material for high-performance aqueous zinc-ion batteries
    Li, Runxia
    Guan, Chao
    Bian, Xiaofei
    Yu, Xin
    Hu, Fang
    RSC ADVANCES, 2020, 10 (12) : 6807 - 6813
  • [32] Carbonized Ganoderma Lucidum/V2O3 Composites as a Superior Cathode for High-Performance Aqueous Zinc-Ion Batteries
    Zeng, Guilin
    Li, Zhengda
    Jiang, Shaohua
    Zhou, Wei
    MOLECULES, 2024, 29 (15):
  • [33] Enhancing aqueous zinc-ion batteries: The role of copper-ion-doped Mn3O4 as cathode material
    Zhang, Yuanhao
    Liang, Junqi
    Wu, Mengke
    Tang, Qihao
    Xie, Yishun
    Li, Ziwei
    Lu, Shaorong
    Qin, Lin
    Fan, Xin
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [34] Porous cube-like Mn3O4@C as an advanced cathode for low-cost neutral zinc-ion battery
    Chen, Hui
    Zhou, Wanhai
    Zhu, Ding
    Liu, Zhenzhen
    Feng, Zhao
    Li, Jinchi
    Chen, Yungui
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 813
  • [35] Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries
    Min Mao
    Xingxing Wu
    Yi Hu
    Qunhui Yuan
    Yan-Bing He
    Feiyu Kang
    Journal of Energy Chemistry, 2021, 52 (01) : 277 - 283
  • [36] Charge storage mechanism of MOF-derived Mn2O3 as high performance cathode of aqueous zinc-ion batteries
    Mao, Min
    Wu, Xingxing
    Hu, Yi
    Yuan, Qunhui
    He, Yan-Bing
    Kang, Feiyu
    JOURNAL OF ENERGY CHEMISTRY, 2021, 52 : 277 - 283
  • [37] Carbon nanotube@Mn3O4 composite as cathode for high-performance aqueous zinc ion battery
    Ren, Guoying
    Luo, Zhiqiang
    Duan, Yueqin
    Liu, Xizheng
    Yuan, Zhihao
    Cai, Fengshi
    Journal of Alloys and Compounds, 2022, 898
  • [38] Carbon nanotube@Mn3O4 composite as cathode for high-performance aqueous zinc ion battery
    Ren, Guoying
    Luo, Zhiqiang
    Duan, Yueqin
    Liu, Xizheng
    Yuan, Zhihao
    Cai, Fengshi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 898
  • [39] Intimately coupled Mn3O4 nanocrystalline@3D honeycomb hierarchical porous network scaffold carbon for high-performance cathode of aqueous zinc-ion batteries
    Chen, L.
    Yuan, Y. F.
    Du, P. F.
    Yin, S. M.
    Zhu, M.
    Guo, S. Y.
    NANOTECHNOLOGY, 2021, 32 (40)
  • [40] V2O3@C Microspheres as the High-Performance Cathode Materials for Advanced Aqueous Zinc-Ion Storage
    Wang, Deqiang
    Liang, Wenhao
    He, Xuedong
    Yang, Yun
    Wang, Shun
    Li, Jun
    Wang, Jichang
    Jin, Huile
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (17) : 20876 - 20884