Single-cell RNA-seq data clustering by deep information fusion
被引:3
|
作者:
Ren, Liangrui
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Software, Jinan, Peoples R ChinaShandong Univ, Sch Software, Jinan 250101, Peoples R China
Ren, Liangrui
[2
]
Wang, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C FA, Jinan, Peoples R ChinaShandong Univ, Sch Software, Jinan 250101, Peoples R China
Wang, Jun
[3
]
Li, Wei
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R ChinaShandong Univ, Sch Software, Jinan 250101, Peoples R China
Li, Wei
[4
]
Guo, Maozu
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing, Peoples R ChinaShandong Univ, Sch Software, Jinan 250101, Peoples R China
Guo, Maozu
[5
]
Yu, Guoxian
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Sch Software, Jinan 250101, Peoples R China
Shandong Univ, Sch Software, Jinan, Peoples R ChinaShandong Univ, Sch Software, Jinan 250101, Peoples R China
Yu, Guoxian
[1
,2
]
机构:
[1] Shandong Univ, Sch Software, Jinan 250101, Peoples R China
[2] Shandong Univ, Sch Software, Jinan, Peoples R China
[3] Shandong Univ, Joint SDU NTU Ctr Artificial Intelligence Res C FA, Jinan, Peoples R China
[4] Shandong Univ, Sch Control Sci & Engn, Jinan, Peoples R China
[5] Beijing Univ Civil Engn & Architecture, Sch Elect & Informat Engn, Beijing, Peoples R China
Determining cell types by single-cell transcriptomics data is fundamental for downstream analysis. However, cell clustering and data imputation still face the computation challenges, due to the high dropout rate, sparsity and dimensionality of single-cell data. Although some deep learning based solutions have been proposed to handle these challenges, they still can not leverage gene attribute information and cell topology in a sensible way to explore the consistent clustering. In this paper, we present scDeepFC, a deep information fusion-based single-cell data clustering method for cell clustering and data imputation. Specifically, scDeepFC uses a deep auto-encoder (DAE) network and a deep graph convolution network to embed high-dimensional gene attribute information and high-order cell-cell topological information into different low-dimensional representations, and then fuses them to generate a more comprehensive and accurate consensus representation via a deep information fusion network. In addition, scDeepFC integrates the zero-inflated negative binomial (ZINB) into DAE to model the dropout events. By jointly optimizing the ZINB loss and cell graph reconstruction loss, scDeepFC generates a salient embedding representation for clustering cells and imputing missing data. Extensive experiments on real single-cell datasets prove that scDeepFC outperforms other popular single-cell analysis methods. Both the gene attribute and cell topology information can improve the cell clustering.
机构:
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USAMichigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
Manousidaki, Andriana
Little, Anna
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utah, Dept Math, Salt Lake City, UT 84112 USAMichigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
Little, Anna
Xie, Yuying
论文数: 0引用数: 0
h-index: 0
机构:
Michigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
Michigan State Univ East Lansing, Dept Computat Math Sci & Engn, E Lansing, MI 48823 USAMichigan State Univ, Dept Stat & Probabil, E Lansing, MI 48823 USA
机构:
Worcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USAWorcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
Srinivasan, Suhas
Leshchyk, Anastasia
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Bioinformat & Computat Biol Program, Worcester, MA 01609 USAWorcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
Leshchyk, Anastasia
Johnson, Nathan T.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Lab Syst Pharmacol, Harvard Program Therapeut Sci, Boston, MA 02115 USA
Dana Farber Canc Inst, Breast Tumor Immunol Lab, Boston, MA 02215 USAWorcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
Johnson, Nathan T.
Korkin, Dmitry
论文数: 0引用数: 0
h-index: 0
机构:
Worcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
Worcester Polytech Inst, Bioinformat & Computat Biol Program, Worcester, MA 01609 USA
Worcester Polytech Inst, Dept Comp Sci, Worcester, MA 01609 USAWorcester Polytech Inst, Data Sci Program, Worcester, MA 01609 USA
机构:
Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Jinan 250100, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Jinan 250100, Peoples R China
Mei, Qinglin
Li, Guojun
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Univ, Res Ctr Math & Interdisciplinary Sci, Jinan 250100, Peoples R China
Shandong Univ, Sch Math, Jinan 250100, Peoples R China
Liaocheng Univ, Sch Math Sci, Liaocheng 252000, Shandong, Peoples R ChinaShandong Univ, Res Ctr Math & Interdisciplinary Sci, Jinan 250100, Peoples R China
Li, Guojun
Su, Zhengchang
论文数: 0引用数: 0
h-index: 0
机构:
Univ North Carolina Charlotte, Dept Bioinformat & Genom, Charlotte, NC 28223 USAShandong Univ, Res Ctr Math & Interdisciplinary Sci, Jinan 250100, Peoples R China