Embedding Global Contrastive and Local Location in Self-Supervised Learning

被引:22
|
作者
Zhao, Wenyi [1 ]
Li, Chongyi [2 ]
Zhang, Weidong [3 ]
Yang, Lu [1 ]
Zhuang, Peixian [4 ]
Li, Lingqiao [5 ]
Fan, Kefeng [6 ]
Yang, Huihua [1 ]
机构
[1] Beijing Univ Posts & Telecommun, Sch Artificial Intelligence, Beijing 100876, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Henan Inst Sci & Technol, Sch Informat Engn, Xinxiang 453600, Peoples R China
[4] Univ Sci & Technol Beijing, Sch Automat & Elect Engn, Key Lab Knowledge Automat Ind Proc, Minist Educ, Beijing 100083, Peoples R China
[5] Guilin Univ Elect Technol, Sch Comp Sci & Informat Secur, Guilin 541004, Peoples R China
[6] Chinese Elect Standardizat Inst, Beijing 101102, Peoples R China
基金
中国国家自然科学基金;
关键词
Task analysis; Optimization; Feature extraction; Semantics; Training; Ensemble learning; Data models; Self-supervised representation learning; contrastive learning; location-based sampling; ensemble learning; MOMENTUM CONTRAST;
D O I
10.1109/TCSVT.2022.3221611
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Self-supervised representation learning (SSL) typically suffers from inadequate data utilization and feature-specificity due to the suboptimal sampling strategy and the monotonous optimization method. Existing contrastive-based methods alleviate these issues through exceedingly long training time and large batch size, resulting in non-negligible computational consumption and memory usage. In this paper, we present an efficient self-supervised framework, called GLNet. The key insights of this work are the novel sampling and ensemble learning strategies embedded in the self-supervised framework. We first propose a location-based sampling strategy to integrate the complementary advantages of semantic and spatial characteristics. Whereafter, a Siamese network with momentum update is introduced to generate representative vectors, which are used to optimize the feature extractor. Finally, we particularly embed global contrastive and local location tasks in the framework, which aims to leverage the complementarity between the high-level semantic features and low-level texture features. Such complementarity is significant for mitigating the feature-specificity and improving the generalizability, thus effectively improving the performance of downstream tasks. Extensive experiments on representative benchmark datasets demonstrate that GLNet performs favorably against the state-of-the-art SSL methods. Specifically, GLNet improves MoCo-v3 by 2.4% accuracy on ImageNet dataset, while improves 2% accuracy and consumes only 75% training time on the ImageNet-100 dataset. In addition, GLNet is appealing in its compatibility with popular SSL frameworks. Code is available at GLNet.
引用
收藏
页码:2275 / 2289
页数:15
相关论文
共 50 条
  • [21] Contrastive Transformation for Self-supervised Correspondence Learning
    Wang, Ning
    Zhou, Wengang
    Li, Hougiang
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10174 - 10182
  • [22] Self-Supervised Contrastive Learning for Singing Voices
    Yakura, Hiromu
    Watanabe, Kento
    Goto, Masataka
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2022, 30 : 1614 - 1623
  • [23] JGCL: Joint Self-Supervised and Supervised Graph Contrastive Learning
    Akkas, Selahattin
    Azad, Ariful
    COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2022, WWW 2022 COMPANION, 2022, : 1099 - 1105
  • [24] CONTRASTIVE HEARTBEATS: CONTRASTIVE LEARNING FOR SELF-SUPERVISED ECG REPRESENTATION AND PHENOTYPING
    Wei, Crystal T.
    Hsieh, Ming-En
    Liu, Chien-Liang
    Tseng, Vincent S.
    2022 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2022, : 1126 - 1130
  • [25] Self-Supervised Contrastive Learning for Volcanic Unrest Detection
    Bountos, Nikolaos Ioannis
    Papoutsis, Ioannis
    Michail, Dimitrios
    Anantrasirichai, Nantheera
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] DimCL: Dimensional Contrastive Learning for Improving Self-Supervised Learning
    Nguyen, Thanh
    Pham, Trung Xuan
    Zhang, Chaoning
    Luu, Tung M.
    Vu, Thang
    Yoo, Chang D.
    IEEE ACCESS, 2023, 11 : 21534 - 21545
  • [27] Self-Supervised Contrastive Learning In Spiking Neural Networks
    Bahariasl, Yeganeh
    Kheradpisheh, Saeed Reza
    PROCEEDINGS OF THE 13TH IRANIAN/3RD INTERNATIONAL MACHINE VISION AND IMAGE PROCESSING CONFERENCE, MVIP, 2024, : 181 - 185
  • [28] Self-supervised Contrastive Learning for Predicting Game Strategies
    Lee, Young Jae
    Baek, Insung
    Jo, Uk
    Kim, Jaehoon
    Bae, Jinsoo
    Jeong, Keewon
    Kim, Seoung Bum
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2023, 542 : 136 - 147
  • [29] Contrasting Contrastive Self-Supervised Representation Learning Pipelines
    Kotar, Klemen
    Ilharco, Gabriel
    Schmidt, Ludwig
    Ehsani, Kiana
    Mottaghi, Roozbeh
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9929 - 9939
  • [30] Malicious Traffic Identification with Self-Supervised Contrastive Learning
    Yang, Jin
    Jiang, Xinyun
    Liang, Gang
    Li, Siyu
    Ma, Zicheng
    SENSORS, 2023, 23 (16)