Enhanced strength-ductility synergy of medium-entropy alloys via multiple level gradient structures

被引:35
|
作者
Zhang, Xu [1 ]
Gui, Yang [1 ]
Lai, Minjie [2 ]
Lu, Xiaochong [3 ]
Gu, Ji [4 ]
Wang, Feng [4 ]
Yang, Tao [5 ]
Wang, Zhangwei [4 ]
Song, Min [4 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech & Aerosp Engn, Appl Mech & Struct Safety Key Lab Sichuan Prov, Chengdu 610031, Peoples R China
[2] Northwestern Polytech Univ, State Key Lab Solidificat Proc, Xian 710072, Peoples R China
[3] Sichuan Univ, Sch Aeronaut & Astronaut, Chengdu 610065, Peoples R China
[4] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Peoples R China
[5] City Univ Hong Kong, Dept Mat Sci & Engn, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Medium-entropy alloys; Pre-torsion; Mechanical properties; Gradient structure; Crystal plasticity; MECHANICAL-PROPERTIES; CRYSTAL PLASTICITY; DEFORMATION-BEHAVIOR; CARBON; MICROSTRUCTURES; EVOLUTION; SIMULATION; SIZE;
D O I
10.1016/j.ijplas.2023.103592
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The microstructures, mechanical properties, and deformation substructures of gradient Mo0.3NiCoCr medium-entropy alloys (MEAs) with very coarse grain size created by pre-torsion have been investigated. The strength of MEAs increases with the increase of torsion angle, while the tensile elongation nearly remains the same, suggesting the enhanced strength-ductility synergy. The initial dislocation density gradient structure after torsion and the following deformation sub-structure under tension are uncovered by means of electron backscatter diffraction (EBSD), electron channeling contrast imaging (ECCI), and transmission electron microscopy (TEM). The crystal plasticity finite element method (CPFEM) is employed to quantitively evaluate the evolution of dislocation densities and mechanical twinning volume fraction. The combination of experimental characterization and theoretical modeling enables to clarify the underlying strengthening and strain hardening mechanisms. The gradient distribution of dislocations created by the torsion leads to the rise of yield strength. Moreover, the high order of microbands, which arise from the activation of multiple slip systems during torsion, and additional mechanical twinning form in the gradient MEAs upon loading, constituting multiple level gradient structures. As the plastic strain goes on, the microbands can propagate and refine continuously, along with the interactions with the nano twins, in these MEAs with very coarse grain size up to similar to 500 mu m, which produce progressively high strain hardening and stabilize the plastic deformation over the whole deformation regime. This study thus offers guidance for optimizing the mechanical performance of structural materials via tuning the design of gradient structure.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Superior strength-ductility CoCrNi medium-entropy alloy wire
    Liu, Jun-Peng
    Chen, Jin-Xi
    Liu, Tian-Wei
    Li, Chen
    Chen, Yan
    Dai, Lan-Hong
    SCRIPTA MATERIALIA, 2020, 181 : 19 - 24
  • [22] Achieving a strength-ductility combination in VCoNi medium-entropy alloy via N alloying
    Yu, Fengshan
    Xu, Dingfeng
    Wang, Mingliang
    Li, Lei
    Lu, Yiping
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 963
  • [23] Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy
    Ding, Xin-Xin
    Wang, Jing
    Liu, Dong
    Wang, Chang
    Jiang, Ping
    Qu, Hua
    Liu, Guang-Hua
    Yuan, Fu-Ping
    Wu, Xiao-Lei
    RARE METALS, 2022, 41 (08) : 2894 - 2905
  • [24] Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy
    Xin-Xin Ding
    Jing Wang
    Dong Liu
    Chang Wang
    Ping Jiang
    Hua Qu
    Guang-Hua Liu
    Fu-Ping Yuan
    Xiao-Lei Wu
    RareMetals, 2022, 41 (08) : 2894 - 2905
  • [25] Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy
    Xin-Xin Ding
    Jing Wang
    Dong Liu
    Chang Wang
    Ping Jiang
    Hua Qu
    Guang-Hua Liu
    Fu-Ping Yuan
    Xiao-Lei Wu
    Rare Metals, 2022, 41 : 2894 - 2905
  • [26] Achieving strength-ductility synergy in novel paramagnetic Fe-based medium-entropy alloys through deep cryogenic deformation
    Ma, Hu-Wen
    Zhao, Yan-Chun
    Feng, Li
    Liu, Tian-Zeng
    Yu, Zhi-Qi
    Jin, Bo
    Duan, Wang-Chun
    Liaw, Peter K.
    Ma, Dong
    RARE METALS, 2024, 43 (09) : 4493 - 4507
  • [27] Developing novel ultra-thin refractory medium-entropy foils with excellent strength-ductility synergy
    Guo, Sheng-Li
    Zhang, Wei
    Yan, Xue-Hui
    Wang, Guang-Zong
    He, Ke-Hang
    Zhu, Bao-Hong
    Qiu, Hao-Chen
    Wu, Shuai-Shuai
    Jiang, Wei
    RARE METALS, 2025, 44 (02) : 1380 - 1391
  • [28] Hierarchical precipitates facilitate the excellent strength-ductility synergy in a CoCrNi-based medium-entropy alloy
    Wang, Qiang
    Zhang, Tuanwei
    Jiao, Zhiming
    Wang, Jianjun
    Zhao, Dan
    Wu, Guiying
    Qiao, Junwei
    Liaw, Peter K.
    Wang, Zhihua
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2023, 873
  • [29] Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping
    D.D.Zhang
    H.Wang
    J.Y.Zhang
    H.Xue
    G.Liu
    J.Sun
    JournalofMaterialsScience&Technology, 2021, 87 (28) : 184 - 195
  • [30] Achieving excellent strength-ductility synergy in twinned NiCoCr medium-entropy alloy via Al/Ta co-doping
    Zhang, D. D.
    Wang, H.
    Zhang, J. Y.
    Xue, H.
    Liu, G.
    Sun, J.
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2021, 87 : 184 - 195