An optimized hybrid deep learning model for PM2.5 and O3 concentration prediction

被引:7
|
作者
Hu, Juntao [1 ,2 ]
Chen, Yiyuan [1 ,2 ,3 ]
Wang, Wei [1 ,2 ,3 ]
Zhang, Shicheng [1 ,2 ,3 ]
Cui, Can [1 ,2 ,3 ]
Ding, Wenke [1 ,2 ,3 ]
Fang, Yong [1 ,2 ]
机构
[1] Hefei Univ Technol, Acad Optoelect Technol, Natl Engn Lab Special Display Technol, State Key Lab Adv Display Technol, Hefei 230009, Peoples R China
[2] Hefei Univ Technol, Intelligent Mfg Inst, Hefei 230051, Peoples R China
[3] Hefei Univ Technol, Sch Instrument Sci & Optoelect Engn, Hefei 230009, Peoples R China
来源
AIR QUALITY ATMOSPHERE AND HEALTH | 2023年 / 16卷 / 04期
关键词
Air pollution forecasting; Convolutional neural network; Long-term and short-term memory; Gated recurrent unit; PARTICULATE MATTER; AIR-POLLUTION; URBAN; SENSITIVITY; SYSTEM;
D O I
10.1007/s11869-023-01317-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As people focus more on environmental protection, air quality prediction plays an increasingly important role in reducing pollution hazards. Both fine particulate matter (PM2.5) and ozone (O-3) pollutants can cause serious damage to human health and property, so it is necessary to accurately predict the concentration of these pollutants. In this study, a hybrid deep air quality prediction model consisting of a one-dimensional convolutional neural network (CNN), bidirectional long-term and short-term memory (BiLSTM), and a gated recurrent unit (GRU) is proposed to predict air quality pollutant concentrations. This model overcomes the limitations of a single model while taking advantages of its benefits. The BiLSTM neural network has more parameters and poor convergence performance, and the GRU has a poor ability to capture long-distance dependencies between features. Compared with the other three deep learning models, the CNN-BiLSTM-GRU model achieves better prediction results. The model proposed in this paper with both meteorological factors and pollutant factors shows the best prediction results with an R-2 of 0.956 and RMSE of 17.2 mu g/m(3) for PM2.5 and an R-2 of 0.958 and RMSE of 13.43 mu g/m(3) for O-3. The original data set from the Aotizhongxin Observator of Beijing with 35,064 samples is selected as the experimental data. The experimental results show that the CNN-BiLSTM-GRU model proposed in this paper achieves the best prediction results. The results show that the proposed model can predict PM2.5 and O-3 more accurately and more robustly, which indicates that it is a promising method for air and particulate pollutants' performance prediction.
引用
收藏
页码:857 / 871
页数:15
相关论文
共 50 条
  • [1] An optimized hybrid deep learning model for PM2.5 and O3 concentration prediction
    Juntao Hu
    Yiyuan Chen
    Wei Wang
    Shicheng Zhang
    Can Cui
    Wenke Ding
    Yong Fang
    Air Quality, Atmosphere & Health, 2023, 16 : 857 - 871
  • [2] A deep learning model for PM2.5 concentration prediction
    Zhang, Zhendong
    Ma, Xiang
    Yan, Ke
    2021 IEEE INTL CONF ON DEPENDABLE, AUTONOMIC AND SECURE COMPUTING, INTL CONF ON PERVASIVE INTELLIGENCE AND COMPUTING, INTL CONF ON CLOUD AND BIG DATA COMPUTING, INTL CONF ON CYBER SCIENCE AND TECHNOLOGY CONGRESS DASC/PICOM/CBDCOM/CYBERSCITECH 2021, 2021, : 428 - 433
  • [3] Citywide PM2.5 Concentration Prediction Using Deep Learning Model
    Yang, Xiaonuo
    Sun, Xiao
    Liu, Na
    Chai, Yueting
    2024 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND ARTIFICIAL INTELLIGENCE, SEAI 2024, 2024, : 247 - 251
  • [4] An Improved Hybrid Transfer Learning-Based Deep Learning Model for PM2.5 Concentration Prediction
    Ni, Jianjun
    Chen, Yan
    Gu, Yu
    Fang, Xiaolong
    Shi, Pengfei
    APPLIED SCIENCES-BASEL, 2022, 12 (07):
  • [5] Apply a deep learning hybrid model optimized by an Improved Chimp Optimization Algorithm in PM2.5 prediction
    Wei, Ming
    Du, Xiaopeng
    MACHINE LEARNING WITH APPLICATIONS, 2025, 19
  • [6] PM2.5 and O3 concentration estimation based on interpretable machine learning
    Wang, Siyuan
    Ren, Ying
    Xia, Bisheng
    ATMOSPHERIC POLLUTION RESEARCH, 2023, 14 (09)
  • [7] A new hybrid prediction model of PM2.5 concentration based on secondary decomposition and optimized extreme learning machine
    Yang, Hong
    Zhao, Junlin
    Li, Guohui
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (44) : 67214 - 67241
  • [8] A new hybrid prediction model of PM2.5 concentration based on secondary decomposition and optimized extreme learning machine
    Hong Yang
    Junlin Zhao
    Guohui Li
    Environmental Science and Pollution Research, 2022, 29 : 67214 - 67241
  • [9] Prediction of PM2.5 concentration in Ulaanbaatar with deep learning models
    Suriya
    Natsagdorj, Narantsogt
    Aorigele
    Zhou, Haijun
    Sachurila
    URBAN CLIMATE, 2023, 47
  • [10] A Hybrid Deep Learning Approach for PM2.5 Concentration Prediction in Smart Environmental Monitoring
    Vo, Minh Thanh
    Vo, Anh H.
    Bui, Huong
    Le, Tuong
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 36 (03): : 3029 - 3041