Constitutive model for ultra-high performance concrete (UHPC) considering the size effect under cyclic compressive loading

被引:15
|
作者
Zhang, Xiaochen [1 ]
Lu, Ya [1 ]
Wu, Xiangguo [2 ,3 ]
Wang, Puyan [4 ]
Li, Ran [5 ]
Liu, Yang [6 ]
Shen, Chao [7 ]
Zhang, Heming [7 ]
Zhang, Dong [2 ]
机构
[1] Harbin Inst Technol, Sch Civil Engn, Harbin 150001, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fujian Provincial Key Lab Multidisasters Prevent &, Fuzhou 350108, Peoples R China
[3] Harbin Inst Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Key Lab Struct Dynam Behav & Control, Minist Ind & Informat Technol,Minist Educ, Harbin 150090, Peoples R China
[4] Ningbo Elect Power Design Inst Co Ltd, Ningbo 315000, Peoples R China
[5] China Acad Bldg Res Co Ltd, Beijing 100013, Peoples R China
[6] CGN New Energy Holiding Co Ltd, Heilongjiang Branch, Harbin 150090, Peoples R China
[7] Shanghai Fengling Renewables Co Ltd, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Ultra-high performance concrete; Cyclic compressive loading; Constitutive model; Size effect; SHEAR-STRENGTH; BEHAVIOR;
D O I
10.1016/j.conbuildmat.2023.130499
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this study, the size effect of the thickness of the specimen on the mechanical properties of UHPC was investigated through compression tests under cyclic loading. UHPC prisms with different thicknesses from 20 mm to 100 mm were tested under unloading/reloading cycles and the stress-strain curves were recorded for this purpose. A constitutive model to predict the stress-strain response of UHPC accounting for the thickness was proposed. It was found that UHPC specimens with different thicknesses showed the same failure mode of di-agonal shear failure. The size effect of thickness was significant for the compressive strength but was negligible for the peak strain and elastic modulus. The damage of the unloading modulus and reloading modulus at zero stress only occurred when the unloading strain exceeded 0.8 times the peak strain. Furthermore, the proposed constitutive model could predict the stress-strain response for UHPC with different thicknesses under cyclic compressive loading with acceptable accuracy.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Mechanical degradation of ultra-high performance concrete under flexural fatigue loading
    Cerqueira, Nabila Rezende de Almeida
    Monteiro, Vitor Moreira de Alencar
    Souza, Felipe Rodrigues de
    Cardoso, Daniel Carlos Taissum
    Silva, Flavio de Andrade
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 391
  • [42] Experimental investigation on axial compressive behavior of ultra-high performance concrete (UHPC) filled glass FRP tubes
    Tian, Huiwen
    Zhou, Zhen
    Wei, Yang
    Wang, Yongquan
    Lu, Jiping
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 225 : 678 - 691
  • [43] Compressive behavior and constitutive model for roller compacted concrete under impact loading: Considering vertical stratification
    Zhang, She-rong
    Wang, Xiao-hua
    Wang, Chao
    Song, Ran
    Huo, Heng-yan
    CONSTRUCTION AND BUILDING MATERIALS, 2017, 151 : 428 - 440
  • [44] ULTRA-HIGH PERFORMANCE CONCRETE (UHPC) WITH SUBSTITUTION OF CEMENTITIOUS MATRIX BY WASTE
    Maria Dolores, Rubio-Cintas
    Maria Eugenia, Parron-Rubio
    Francisca, Perez-Garcia
    Jose Manuel, Garcia-Manrique
    Antonio, Gonzalez-Herrera
    6TH INTERNATIONAL CONFERENCE ON MECHANICAL MODELS IN STRUCTURAL ENGINEERING, CMMOST 2021, 2 EDITION, 2022, : 140 - 147
  • [45] Investigation on bonding between timber and ultra-high performance concrete (UHPC)
    Schaefers, Martin
    Seim, Werner
    CONSTRUCTION AND BUILDING MATERIALS, 2011, 25 (07) : 3078 - 3088
  • [46] Rheological characteristics of Ultra-High performance concrete (UHPC) incorporating bentonite
    Li, Keke
    Leng, Yong
    Xu, Liuliu
    Zhang, Junjie
    Liu, Kangning
    Fan, Dingqiang
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 349
  • [47] Intelligent design and manufacturing of ultra-high performance concrete (UHPC)-A review
    Fan, Dingqiang
    Zhu, Jinyun
    Fan, Mengxin
    Lu, Jian-Xin
    Chu, S. H.
    Dong, Enlai
    Yu, Rui
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 385
  • [48] Enhancement of local concrete compression performance by incorporating ultra-high performance concrete (UHPC) tube
    Wang, Lifeng
    Wu, Haiqi
    Liu, Long
    Xiao, Ziwang
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2022, 18 (05) : 856 - 878
  • [49] Viscoelastic constitutive model for asphalt concrete under cyclic loading
    Lee, HJ
    Kim, YR
    JOURNAL OF ENGINEERING MECHANICS-ASCE, 1998, 124 (01): : 32 - 40
  • [50] Impact Compressive Performance and Damage Evolution of Ultra-High Performance Concrete
    Rong Z.
    Wang Y.
    Jiao M.
    Zhang J.
    Chen H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (11): : 2322 - 2330