Effect of ammonia on the soot properties in a laminar ethylene flame

被引:1
|
作者
Shi, Xiuyong [1 ]
Qian, Weiwei [1 ]
Li, Song [2 ]
Shuai, Shijin [3 ,4 ]
机构
[1] Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
[2] East China Jiaotong Univ, Sch Mechatron & Vehicle Engn, Nanchang 330013, Peoples R China
[3] Tsinghua Univ, Sch Vehicle & Mobil, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Inst Aero Engine, Beijing 100084, Peoples R China
关键词
Ammonia; Laminar ethylene flames; Soot properties; Morphology and nanostructure; Graphitization degree; Surface functional groups; EMISSION CHARACTERISTICS; REACTIVITY; PARAMETERS; COMBUSTION; GRAPHITE;
D O I
10.1016/j.fuel.2023.130402
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Ammonia, as a non-carbon fuel, has been regarded as an alternative fuel for combustion. In this investigation, the effect of ammonia on the soot properties such as morphology, nanostructure, graphitization degree, surface functional groups, and oxidation energy in a laminar ethylene flame has been studied using different detection techniques at 15 mm and 30 mm height above burner (HAB). The results show that the soot basically appears as a chain-like aggregate, which is composed of several tens of primary particles, and it also finds that the use of ammonia decreases diameters of primary particles, the diameter of A60 (ethylene with 60 ml/min ammonia) decreases by 28.0 % compared with that of A0 (ethylene without ammonia) at 30 mm HAB. Moreover, the addition of ammonia promotes the regularity degree of soot, slightly increases the mean separation distance at 30 mm HAB, and decreases the mean fringe tortuosity both of 15 mm and 30 mm HAB based on the results from high-resolution transmission electron microscope (HRTEM). Meanwhile, the ratio of ID1/IG, ID3/IG, and ID4/IG has been used to evaluate the degree of graphitization, it indicates that the use of ammonia increases the degree of graphitization, but both of the hybridization degree of sp3 and sp2 in amorphous carbon and carbon atoms decrease. Furthermore, the proportion of oxygenated functional groups decreases with the increase of ammonia. The highest content of C-OH functional group is about 9 % to 15 %, followed by C=O and O-C=O functional groups, which is about 3 % to 6 % and 2.5 % to 3.5 %, respectively. Eventually, the oxidation process of the particles has been analyzed, it is indicated that the use of ammonia decreases the oxidation activity, which is more difficult to oxidize.
引用
收藏
页数:14
相关论文
共 50 条
  • [11] Effect of soot on N2O formation in the ethylene/air laminar diffusion flame
    Zheng, Shu
    Zhang, Yuhong
    Liu, Wen
    Yang, Yu
    Lu, Qiang
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2022, 50 (07): : 136 - 142
  • [12] Effect of ammonia addition on nanostructure of soot in laminar coflow diffusion flames of ethylene diluted with nitrogen
    Zheng, Jingru
    Hu, Longhua
    Chung, Suk Ho
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2024, 40 (1-4)
  • [13] Effects of ammonia addition on soot formation in ethylene laminar premixed flames
    Shao, Can
    Campuzano, Felipe
    Zhai, Yitong
    Wang, Haoyi
    Zhang, Wen
    Sarathy, S. Mani
    COMBUSTION AND FLAME, 2022, 235
  • [14] Effects of ammonia addition on soot formation in ethylene laminar diffusion flames
    Liu, Yang
    Cheng, Xiaobei
    Li, Yu
    Qiu, Liang
    Wang, Xin
    Xu, Yishu
    FUEL, 2021, 292
  • [15] ON THE RATE OF COMBUSTION OF SOOT IN A LAMINAR SOOT FLAME
    LEE, KB
    THRING, MW
    BEER, JM
    COMBUSTION AND FLAME, 1962, 6 (03) : 137 - 145
  • [16] Effects of water vapor addition to the air stream on soot formation and flame properties in a laminar coflow ethylene/air diffusion flame
    Liu, Fengshan
    Consalvi, Jean-Louis
    Fuentes, Andres
    COMBUSTION AND FLAME, 2014, 161 (07) : 1724 - 1734
  • [17] Effects of Acetylene Addition to the Fuel Stream on Soot Formation and Flame Properties in an Axisymmetric Laminar Coflow Ethylene/Air Diffusion Flame
    Xie, Xinrong
    Zheng, Shu
    Sui, Ran
    Luo, Zixue
    Liu, Shi
    Consalvi, Jean-Louis
    ACS OMEGA, 2021, 6 (15): : 10371 - 10382
  • [18] Particle size distribution function of incipient soot in laminar premixed ethylene flames: effect of flame temperature
    Zhao, B
    Yang, ZW
    Li, ZG
    Johnston, MV
    Wang, H
    PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2005, 30 : 1441 - 1448
  • [19] Effect of NH3 addition on soot morphology and nanostructure evolution in laminar ethylene diffusion flame
    Feng, Shunjie
    Hong, Run
    Qi, Jiawei
    Dong, Wenlong
    Qiu, Bingbing
    Yan, Xianyao
    Chu, Huaqiang
    FUEL, 2023, 350
  • [20] Computational and experimental study of soot formation in a coflow, laminar ethylene diffusion flame
    Yale Univ, New Haven, United States
    Symposium (International) on Combustion, 1998, 1 : 1497 - 1505