Charting the course to solid-state dual-ion batteries

被引:3
|
作者
Asfaw, Habtom D. [1 ,3 ]
Kotronia, Antonia [2 ]
Garcia-Araez, Nuria [2 ]
Edstrom, Kristina [1 ]
Brandell, Daniel [1 ,3 ]
机构
[1] Uppsala Univ, Dept Chem, Angstrom Lab, Uppsala, Sweden
[2] Univ Southampton, Dept Chem, Southampton, England
[3] Uppsala Univ, Dept Chem, Angstrom Lab, Lagerhyddsvagen 1 POB 538, S-75121 Uppsala, Sweden
关键词
anion intercalation; concentrated electrolytes; dual-ion battery; graphite; ionic liquids; polymer electrolyte; HEXAFLUOROPHOSPHATE ANION INTERCALATION; COMPOSITE POLYMER ELECTROLYTES; ALUMINUM CURRENT COLLECTORS; X-RAY-DIFFRACTION; ELECTROCHEMICAL INTERCALATION; GRAPHITE ELECTRODE; HIGH-VOLTAGE; LIQUID ELECTROLYTES; HIGH-ENERGY; BIS(TRIFLUOROMETHANESULFONYL) IMIDE;
D O I
10.1002/cey2.425
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
An electrolyte destined for use in a dual-ion battery (DIB) must be stable at the inherently high potential required for anion intercalation in the graphite electrode, while also protecting the Al current collector from anodic dissolution. A higher salt concentration is needed in the electrolyte, in comparison to typical battery electrolytes, to maximize energy density, while ensuring acceptable ionic conductivity and operational safety. In recent years, studies have demonstrated that highly concentrated organic electrolytes, ionic liquids, gel polymer electrolytes (GPEs), ionogels, and water-in-salt electrolytes can potentially be used in DIBs. GPEs can help reduce the use of solvents and thus lead to a substantial change in the Coulombic efficiency, energy density, and long-term cycle life of DIBs. Furthermore, GPEs are suited to manufacture compact DIB designs without separators by virtue of their mechanical strength and electrical performance. In this review, we highlight the latest advances in the application of different electrolytes in DIBs, with particular emphasis on GPEs.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] Sustainable Dual-Ion Batteries beyond Li
    Zhao, Zhiming
    Alshareef, Husam N.
    ADVANCED MATERIALS, 2024, 36 (07)
  • [22] Charge Carriers for Aqueous Dual-Ion Batteries
    Wang, Shaofeng
    Guan, Ying
    Gan, Fangqun
    Shao, Zongping
    CHEMSUSCHEM, 2022, 16 (04)
  • [23] Anion Hosting Cathodes in Dual-Ion Batteries
    Rodriguez-Perez, Ismael A.
    Ji, Xiulei
    ACS ENERGY LETTERS, 2017, 2 (08): : 1762 - 1770
  • [24] Interfacial Challenges in Solid-State Li Ion Batteries
    Luntz, Alan C.
    Voss, Johannes
    Reuter, Karsten
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (22): : 4599 - 4604
  • [25] On the design of solid-state Li-ion batteries
    Sokseiha Muy
    Nicola Marzari
    Nature Computational Science, 2021, 1 : 179 - 180
  • [26] RECHARGEABLE SOLID-STATE BATTERIES WITH SILVER ION CONDUCTORS
    TAKADA, K
    KANBARA, T
    YAMAMURA, Y
    KONDO, S
    SOLID STATE IONICS, 1990, 40-1 : 988 - 992
  • [27] On the design of solid-state Li-ion batteries
    Muy, Sokseiha
    Marzari, Nicola
    NATURE COMPUTATIONAL SCIENCE, 2021, 1 (03): : 179 - 180
  • [28] Are solid-state batteries safer than lithium-ion batteries?
    Bates, Alex M.
    Preger, Yuliya
    Torres-Castro, Loraine
    Harrison, Katharine L.
    Harris, Stephen J.
    Hewson, John
    JOULE, 2022, 6 (04) : 742 - 755
  • [29] Robust Succinonitrile Plastic Crystal-Based Ionogel for All-Solid-State Li-Ion and Dual-Ion Batteries
    Pal, Pulak
    Ghosh, Aswini
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (05): : 4295 - 4304
  • [30] Role of Additives in Solid Electrolyte Interphase Formation in Al Anode Dual-Ion Batteries
    Pathak, Biswarup
    Das, Sandeep
    Manna, Surya Sekhar
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (11) : 13398 - 13409