Numerical investigation of pseudoplastic fluid flow and heat transfer in a microchannel under velocity slip effect

被引:10
|
作者
Geraeilinezhad, Milad [2 ]
Afrouzi, Hamid Hassanzadeh [3 ]
Jahanian, Omid [2 ]
Mehrizi, Abbasali Abouei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Babol Noshirvani Univ Technol, Fac Mech Engn, Babol, Iran
[3] Tech & Vocat Univ, Dept Mech Engn, Tehran, Iran
关键词
LBM; Non-Newtonian fluid; Slip flow; Nusselt number; Viscose dissipation; NON-NEWTONIAN NANOFLUID; TEMPERATURE-JUMP; SIMULATIONS; PERFORMANCE;
D O I
10.1016/j.enganabound.2023.06.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study uses the lattice Boltzmann method to research the heat transfer features of Pseudoplastic fluid in a microchannel. The Power law model is intended to simulate non-Newtonian fluids. The fluid slip on the surface is applied to the hydrophobic surfaces, and also the viscose dissipation term is considered in the governing equations. The problem is presented for Reynolds numbers 20 and 30, slip coefficients 0.01, 0.02, and 0.03, and Prandtl numbers 1 and 6.2. Results reveal that the average Nusselt number in the microchannel with a power index of 0.5 of non-Newtonian fluid is more significant than Newtonian fluid. It was seen that viscose dissipation impact on the average Nusselt number is insignificant.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条
  • [41] Numerical investigation of heat transfer enhancement and fluid flow characteristics in a microchannel heat sink with different wall/design configurations of protrusions/dimples
    Rehman, Muhammad Mohib Ur
    Cheema, Taqi Ahmad
    Ahmad, Faraz
    Abbas, Ahmad
    Malik, Muhammad Sohail
    HEAT AND MASS TRANSFER, 2020, 56 (01) : 239 - 255
  • [42] Numerical investigation of the fluid flow and heat transfer characteristics of tree-shaped microchannel heat sink with variable cross-section
    Huang, Pingnan
    Dong, Guanping
    Zhong, Xineng
    Pan, Minqiang
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2020, 147 (147)
  • [43] Numerical investigation of heat transfer enhancement and fluid flow characteristics in a microchannel heat sink with different wall/design configurations of protrusions/dimples
    Muhammad Mohib Ur Rehman
    Taqi Ahmad Cheema
    Faraz Ahmad
    Ahmad Abbas
    Muhammad Sohail Malik
    Heat and Mass Transfer, 2020, 56 : 239 - 255
  • [44] Numerical study on the pulsating effect on heat transfer performance of pseudo-plastic fluid flow in a manifold microchannel heat sink
    Zhang, Hongna
    Li, Sining
    Cheng, Jianping
    Zheng, Zhiying
    Li, Xiaobin
    Li, Fengchen
    APPLIED THERMAL ENGINEERING, 2018, 129 : 1092 - 1105
  • [45] The experimental investigation of axial heat conduction effect on the heat transfer analysis in microchannel flow
    Huang, Chih-Yung
    Wu, Cheng-Min
    Chen, Ying-Nung
    Liou, Tong-Miin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 70 : 169 - 173
  • [46] A numerical study of fluid flow and heat transfer in different microchannel heat sinks for electronic chip cooling
    Xu, Shanglong
    Hu, Guangxin
    Qin, Jie
    Yang, Yue
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2012, 26 (04) : 1257 - 1263
  • [47] Numerical investigation of the effect of second order slip flow conditions on interfacial heat transfer in micro pipes
    Soner Şen
    Sādhanā, 2019, 44
  • [48] Numerical simulation of the fluid flow and heat transfer characteristics of microchannel heat exchangers with different reentrant cavities
    Pan, Minqiang
    Wang, Hongqing
    Zhong, Yujian
    Fang, Tianyu
    Zhong, Xineng
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2019, 29 (11) : 4334 - 4348
  • [49] Numerical investigation of the effect of second order slip flow conditions on interfacial heat transfer in micro pipes
    Sen, Soner
    SADHANA-ACADEMY PROCEEDINGS IN ENGINEERING SCIENCES, 2019, 44 (07):
  • [50] Experimental and numerical study of fluid flow and heat transfer characteristics in microchannel heat sink with complex structure
    Xia, Guodong
    Ma, Dandan
    Zhai, Yuling
    Li, Yunfei
    Liu, Ran
    Du, Mo
    ENERGY CONVERSION AND MANAGEMENT, 2015, 105 : 848 - 857