Numerical investigation of pseudoplastic fluid flow and heat transfer in a microchannel under velocity slip effect

被引:10
|
作者
Geraeilinezhad, Milad [2 ]
Afrouzi, Hamid Hassanzadeh [3 ]
Jahanian, Omid [2 ]
Mehrizi, Abbasali Abouei [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Phys, Chengdu 610054, Peoples R China
[2] Babol Noshirvani Univ Technol, Fac Mech Engn, Babol, Iran
[3] Tech & Vocat Univ, Dept Mech Engn, Tehran, Iran
关键词
LBM; Non-Newtonian fluid; Slip flow; Nusselt number; Viscose dissipation; NON-NEWTONIAN NANOFLUID; TEMPERATURE-JUMP; SIMULATIONS; PERFORMANCE;
D O I
10.1016/j.enganabound.2023.06.021
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study uses the lattice Boltzmann method to research the heat transfer features of Pseudoplastic fluid in a microchannel. The Power law model is intended to simulate non-Newtonian fluids. The fluid slip on the surface is applied to the hydrophobic surfaces, and also the viscose dissipation term is considered in the governing equations. The problem is presented for Reynolds numbers 20 and 30, slip coefficients 0.01, 0.02, and 0.03, and Prandtl numbers 1 and 6.2. Results reveal that the average Nusselt number in the microchannel with a power index of 0.5 of non-Newtonian fluid is more significant than Newtonian fluid. It was seen that viscose dissipation impact on the average Nusselt number is insignificant.
引用
收藏
页码:501 / 510
页数:10
相关论文
共 50 条