Symmetrized Drude Oscillator Force Fields Improve Numerical Performance of Polarizable Molecular Dynamics

被引:7
|
作者
Dodin, Amro [1 ]
Geissler, Phillip L. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Chem Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
FLUCTUATING CHARGE; WATER; MODEL; SIMULATIONS; PROTEINS; MECHANICS;
D O I
10.1021/acs.jctc.3c00278
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Drude oscillator potentials are a popular and computationally efficient class of polarizable models that represent each polarizable atom as a positively charged Drude core harmonically bound to a negatively charged Drude shell. We show that existing force fields that place all non-Coulomb forces on the Drude core and none on the shell inadvertently couple the dipole to non-Coulombic forces. This introduces errors where interactions with neutral particles can erroneously induce atomic polarization, leading to spurious polarizations in the absence of an electric field, exacerbating violations of equipartition in the employed Carr-Parinello scheme. A suitable symmetrization of the interaction potential that correctly splits the force between the Drude core and shell can correct this shortcoming, improving the stability and numerical performance of Drude oscillator-based simulations. The symmetrization procedure is straightforward and only requires the rescaling of a few force field parameters.
引用
收藏
页码:2906 / 2917
页数:12
相关论文
共 50 条
  • [31] Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields
    Meher, B. R.
    Kumar, M. V. Satish
    Bandyopadhyay, Pradipta
    INDIAN JOURNAL OF PHYSICS, 2009, 83 (01) : 81 - 90
  • [32] Molecular dynamics simulations of methane hydrate using polarizable force fields
    Jiang, Hao
    Jordan, Kenneth D.
    Taylor, Charles
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2007, 233
  • [33] Molecular dynamics simulations of methane hydrate using polarizable force fields
    Jiang, H.
    Jordan, K. D.
    Taylor, C. E.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2007, 111 (23): : 6486 - 6492
  • [34] Computationally Efficient Polarizable MD Simulations: A Simple Water Model for the Classical Drude Oscillator Polarizable Force Field
    Teng, Xiaojing
    Yu, Wenbo
    MacKerell Jr, Alexander D.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (04): : 1016 - 1023
  • [35] DLPGEN: Preparing Molecular Dynamics Simulations with Support for Polarizable Force Fields
    Bernardes, Carlos E. S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (06) : 1471 - 1478
  • [36] Molecular dynamics simulation of HIV-protease with polarizable and non-polarizable force fields
    B. R. Meher
    M. V. Satish Kumar
    Pradipta Bandyopadhyay
    Indian Journal of Physics, 2009, 83 : 81 - 90
  • [37] Toward QM/MM Simulation of Enzymatic Reactions with the Drude Oscillator Polarizable Force Field
    Boulanger, Eliot
    Thiel, Walter
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2014, 10 (04) : 1795 - 1809
  • [38] COMP 366-Optimization of a polarizable force field based on the classical Drude oscillator
    MacKerell, Alexander D., Jr.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 236
  • [39] Molecular dynamics simulations using the drude polarizable force field on GPUs with OpenMM: Implementation, validation, and benchmarks
    Huang, Jing
    Lemkul, Justin A.
    Eastman, Peter K.
    MacKerell, Alexander D., Jr.
    JOURNAL OF COMPUTATIONAL CHEMISTRY, 2018, 39 (21) : 1682 - 1689
  • [40] Steered Molecular Dynamics Simulations of Inner-Ear Cadherins using the Drude Polarizable Force Field
    Narui, Yoshie
    Velez-Cortes, Florencia
    Johnson, Zachary
    Sotomayor, Marcos
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 177A - 177A