Mean estimation using an efficient class of estimators based on simple random sampling: Simulation and applications

被引:6
|
作者
Kumar, Anoop [1 ]
Siddiqui, Asra Sayeed [2 ]
Sidahmed, Manahil [3 ]
Hussam, Eslam [4 ,5 ]
Aljohani, Hassan M. [6 ]
Almulhim, Fatimah A. [7 ]
机构
[1] Cent Univ Haryana, Dept Stat, Mahendergarh 123031, India
[2] Amity Univ, Amity Sch Appl Sci, Dept Stat, Lucknow 226028, Uttar Pradesh, India
[3] Univ Tabuk, Fac Sci, Dept Stat, Tabuk, Saudi Arabia
[4] Helwan Univ, Fac Sci, Cairo, Egypt
[5] Prince Sattam bin Abdulaziz Univ, Coll Business Adm Hawtat bani Tamim, Dept Accounting, Al Kharj, Saudi Arabia
[6] Taif Univ, Coll Sci, Dept Math & Stat, POB 11099, Taif 21944, Saudi Arabia
[7] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Math Sci, POBox 84428, Riyadh 11671, Saudi Arabia
关键词
Efficiency; Simple random sampling; Population mean; Mean square error; AUXILIARY INFORMATION; RATIO;
D O I
10.1016/j.aej.2024.02.003
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this article, we offer simple random sampling (SRS) based efficient class of estimators of population mean (Y) over bar utilizing additional information. The expression of the mean square error of the proposed class of estimators is deduced up to first degree approximation. The efficiency conditions are established which are enhanced numerically utilizing a simulation study consummated over symmetrical and asymmetrical populations. Real data sets are also utilized to exemplify the suggested estimators. The numerical findings are appeared rather acceptable demonstrating better advancement over the ordinary estimators.
引用
收藏
页码:197 / 203
页数:7
相关论文
共 50 条
  • [41] Estimation of mean of a sensitive variable using efficient exponential-type estimators in stratified sampling
    Saleem, Iram
    Sanaullah, Aamir
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2022, 92 (02) : 232 - 248
  • [42] An efficient class of estimators based on ranked set sampling
    Bhushan S.
    Kumar A.
    Life Cycle Reliability and Safety Engineering, 2022, 11 (1) : 39 - 48
  • [43] A CLASS OF RATIO TYPE EXPONENTIAL ESTIMATORS OF POPULATION MEAN USING AUXILIARY ATTRIBUTE IN STRATIFIED RANDOM SAMPLING
    Singh, Housila P.
    Kumar, Hemanta
    Trivedi, Manish
    Garg, Neha
    INTERNATIONAL JOURNAL OF AGRICULTURAL AND STATISTICAL SCIENCES, 2023, 19 : 1011 - 1020
  • [44] New generalized class of estimators for estimation of finite population mean based on probability proportional to size sampling using two auxiliary variables: A simulation study
    Ahmad, Sohaib
    Shabbir, Javid
    Zahid, Erum
    Aamir, Muhammad
    Alqawba, Mohammed
    SCIENCE PROGRESS, 2023, 106 (04)
  • [45] Ranked set sampling versus simple random sampling in the estimation of the mean and the ratio
    Ganeslingam, S.
    Ganesh, Siva
    JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2006, 9 (02): : 459 - 472
  • [46] Novel efficient estimators of finite population mean in stratified random sampling with application
    Sher, Khazan
    Ameeq, Muhammad
    Hassan, Muhammad Muneeb
    Alkhaleel, Basem A.
    Naz, Sidra
    Albalawi, Olyan
    AIMS MATHEMATICS, 2025, 10 (03): : 5495 - 5531
  • [47] Improved estimation of population mean in simple random sampling using information on auxiliary attribute
    Singh, Housila P.
    Solanki, Ramkrishna S.
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (15) : 7798 - 7812
  • [48] A Class of Estimators for Predictive Estimation of Population Mean in Two-Phase Sampling
    Sahoo, L. N.
    Das, B. C.
    Senapati, S. C.
    PAKISTAN JOURNAL OF STATISTICS AND OPERATION RESEARCH, 2013, 9 (02) : 147 - 154
  • [49] A class of hybrid type estimators for variance of a finite population in simple random sampling
    Sanaullah, Aamir
    Niaz, Iqra
    Shabbir, Javid
    Ehsan, Iqra
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022, 51 (10) : 5609 - 5619
  • [50] An Efficient Approach for Estimating Population Mean in Simple Random Sampling Using an Auxiliary Attribute
    Singh, Housila Prasad
    Gupta, Anurag
    Tailor, Rajesh
    THAILAND STATISTICIAN, 2023, 21 (03): : 631 - 659