Flat bands and electronic localization in twisted bilayer graphene nanoribbons

被引:7
|
作者
Andrade, Elias [1 ]
Pantaleon, Pierre A. [2 ]
Guinea, Francisco [2 ,3 ,4 ]
Naumis, Gerardo G. [5 ]
机构
[1] Univ Nacl Autonoma Mexico, Posgrad Ciencias Fis, Inst Fis, Apdo Postal 20-364, Mexico City 01000, DF, Mexico
[2] IMDEA Nanosci, Calle Faraday 9, E-28049 Madrid, Spain
[3] Donostia Int Phys Ctr, Paseo Manuel Lardizabal 4, San Sebastian 20018, Spain
[4] Basque Fdn Sci, Ikerbasque, Bilbao, Spain
[5] Univ Nacl Autonoma Mex UNAM, Dept Sistemas Complejos, Inst Fis, Apdo Postal 20 364, Mexico City 01000, Mexico
关键词
TRANSITIONS; INSULATOR; CASCADE; STATES;
D O I
10.1103/PhysRevB.108.235418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We analyze the electronic structure of twisted bilayer graphene (TBG) nanoribbons close to the magic angle. We describe a transition from an incomplete to a complete moire structure. By considering zigzag and armchair edge terminations, the low-energy bands are strongly modified, and thus, the edge flat-band localization is sensitive to the type of boundary. By means of a scaled tight-binding model, we calculate the band structure and find that, for an armchair configuration, an incomplete moire edge suppresses the edge localization, while for a zigzag configuration, we find a strong interference of the edge states with the moire bands. In particular, for the armchair termination, we observe a competition between the ribbon periodicity and the graphene monolayers, which we describe with a potential well toy model. Furthermore, for ribbons with widths of multiple moire cells, the flat bands of the moires in the bulk are unperturbed as we change the borders. These results are explained in terms of the strong electronic localization, nearly Gaussian, in the AA stacking regions, as confirmed by an inverse participation ratio analysis. Our results demonstrate that the electronic structure of TBG nanoribbons is sensitive to the edge termination, offering an explanation for recent experimental results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Emergence and Tuning of Multiple Flat Bands in Twisted Bilayer γ-Graphyne
    An, Jiao
    Kang, Jun
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (51): : 12283 - 12291
  • [42] Flat Γ Moire Bands in Twisted Bilayer WSe2
    Gatti, G.
    Issing, J.
    Rademaker, L.
    Margot, F.
    De Jong, T. A.
    van der Molen, S. J.
    Teyssier, J.
    Kim, T. K.
    Watson, M. D.
    Cacho, C.
    Dudin, P.
    Avila, J.
    Edwards, K. Cordero
    Paruch, P.
    Ubrig, N.
    Gutierrez-Lezama, I.
    Morpurgo, A. F.
    Tamai, A.
    Baumberger, F.
    PHYSICAL REVIEW LETTERS, 2023, 131 (04)
  • [43] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon*
    Ma, Ya-Bin
    Ouyang, Tao
    Chen, Yuan-Ping
    Xie, Yue-E
    CHINESE PHYSICS B, 2021, 30 (07)
  • [44] Flat-bands in translated and twisted bilayer Penrose quasicrystals
    Diaz-Reynoso, U. A.
    Huipe-Domratcheva, E.
    Navarro, O.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (39)
  • [45] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
    马亚斌
    欧阳滔
    陈元平
    谢月娥
    ChinesePhysicsB, 2021, 30 (07) : 447 - 451
  • [46] Weak localization and antilocalization in twisted bilayer graphene
    Yan, Hongyi
    Liu, Haiwen
    PHYSICAL REVIEW B, 2023, 107 (22)
  • [47] Localization of π-electron density in twisted bilayer graphene
    Sedelnikova, Olga V.
    Bulusheva, Lyubov G.
    Okotrub, Alexander V.
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2017, 11 (02):
  • [48] Effects of strain on the flat band in twisted bilayer graphene
    Zhang, Zhen
    Wen, Lu
    Qiao, Youkai
    Li, Zhiqiang
    CHINESE PHYSICS B, 2023, 32 (10)
  • [49] Flat-band ferromagnetism in twisted bilayer graphene
    Pons, R.
    Mielke, A.
    Stauber, T.
    PHYSICAL REVIEW B, 2020, 102 (23)
  • [50] Effects of strain on the flat band in twisted bilayer graphene
    张镇
    文露
    乔友凯
    李志强
    Chinese Physics B, 2023, 32 (10) : 671 - 677