A Time-Saving Path Planning Scheme for Autonomous Underwater Vehicles With Complex Underwater Conditions

被引:19
|
作者
Yang, Jiachen [1 ]
Huo, Jiaming [1 ]
Xi, Meng [1 ]
He, Jingyi [1 ]
Li, Zhengjian [1 ]
Song, Houbing Herbert [2 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Embry Riddle Aeronaut Univ, Secur & Optimizat Networked Globe Lab, Daytona Beach, FL 32114 USA
基金
中国国家自然科学基金;
关键词
Autonomous underwater vehicle (AUV); Internet of Underwater Things (IoUT); ocean current; path planning; reinforcement learning (RL); time saving; DYNAMIC ENVIRONMENTS;
D O I
10.1109/JIOT.2022.3205685
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous underwater vehicle (AUV) shows great potential in the Internet of Underwater Things (IoUT) system, in which the path planning algorithm plays a fundamental role. However, the complex underwater environment brings greater challenges to AUV path planning, especially the ocean current, which has a profound impact on time and energy consumption. This article focuses on the complex ocean current condition and proposes an underwater path planning method based on proximal policy optimization (UP4O). In this novel method, a deep reinforcement network is constructed to serve as a decision control to plan the moving direction of AUV. An information encoding module is developed to extract the features of the local obstacles. Furthermore, UP4O integrates the obstacle features with the current state information, including relative position, ocean current, and velocity, enabling the AUV to focus on the global direction and local obstacles at the same time. Additionally, to further adapt to the ocean current and shorten the time cost, UP4O expands the action space of AUV, realizing a fine and flexible action adjustment. The wide applicability of UP4O has been proved by numerous experiments. The proposed algorithm can always plan the time-saving and collision-free paths in complex underwater environments with various terrains and ocean current.
引用
下载
收藏
页码:1001 / 1013
页数:13
相关论文
共 50 条
  • [31] Min-Max Path Planning Algorithms for Heterogeneous, Autonomous Underwater Vehicles
    Banik, Sandeep
    Rathinam, Sivakumar
    Sujit, P. B.
    2018 IEEE/OES AUTONOMOUS UNDERWATER VEHICLE WORKSHOP (AUV), 2018,
  • [32] An Overview of Machine Learning Techniques in Local Path Planning for Autonomous Underwater Vehicles
    Okereke, Chinonso E.
    Mohamad, Mohd Murtadha
    Wahab, Nur Haliza Abdul
    Elijah, Olakunle
    Al-Nahari, Abdulaziz
    Zaleha, S. H.
    IEEE ACCESS, 2023, 11 : 24894 - 24907
  • [33] Automatic Path Planning for Autonomous Underwater Vehicles based on an Adaptive Differential Evolution
    Zhang, Chuan-Bin
    Gong, Yue-Jiao
    Li, Jing-Jing
    Lin, Ying
    GECCO'14: PROCEEDINGS OF THE 2014 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2014, : 89 - 95
  • [34] Review of Collision Avoidance and Path Planning Algorithms Used in Autonomous Underwater Vehicles
    Kot, Rafal
    ELECTRONICS, 2022, 11 (15)
  • [35] Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles
    Mohammad Pourmahmood Aghababa
    Mohammad Hossein Amrollahi
    Mehdi Borjkhani
    Journal of Marine Science and Application, 2012, 11 (3) : 378 - 386
  • [36] Application of GA, PSO, and ACO Algorithms to Path Planning of Autonomous Underwater Vehicles
    Aghababa, Mohammad Pourmahmood
    Amrollahi, Mohammad Hossein
    Borjkhani, Mehdi
    JOURNAL OF MARINE SCIENCE AND APPLICATION, 2012, 11 (03) : 378 - 386
  • [37] Online Informative Path Planning for Autonomous Underwater Vehicles with Cross Entropy Optimization
    Li, Yang
    Cui, Rongxin
    Xu, Demin
    Liu, Shuqiang
    2018 3RD IEEE INTERNATIONAL CONFERENCE ON ADVANCED ROBOTICS AND MECHATRONICS (IEEE ICARM), 2018, : 566 - 571
  • [38] Real-time optimal motion planning for autonomous underwater vehicles
    Kumar, RP
    Dasgupta, A
    Kumar, CS
    OCEAN ENGINEERING, 2005, 32 (11-12) : 1431 - 1447
  • [39] Informative Path Planning for an Autonomous Underwater Vehicle
    Binney, Jonathan
    Krause, Andreas
    Sukhatme, Gaurav S.
    2010 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2010, : 4791 - 4796
  • [40] Path planning for autonomous underwater vehicle in time-varying current
    Cao, Xiang
    Sun, Chang-yin
    Chen, Ming-zhi
    IET INTELLIGENT TRANSPORT SYSTEMS, 2019, 13 (08) : 1265 - 1271