Few-Shot Learning for Small Impurities in Tobacco Stems With Improved YOLOv7

被引:6
|
作者
Xue, Sheng [1 ]
Li, Zhenye [1 ]
Wu, Rui [2 ]
Zhu, Tingting [1 ]
Yuan, Yangchun [2 ]
Ni, Chao [1 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Jiangsu, Peoples R China
[2] Jiangsu Xinyuan Tobacco Sheet Co Ltd, Huaian 223002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Impurities; Raw materials; Production; Sorting; Deep learning; Cameras;
D O I
10.1109/ACCESS.2023.3275023
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the increase of public concern about health and smoking, the authorities have gradually tightened the control of tar content in cigarettes, making reconstituted tobacco a growing concern for tobacco companies. Tobacco stems are used as the main raw material for reconstituted tobacco, but they contain a large number of small broken impurities mainly from cigarette butts, which are difficult to remove efficiently by air selection and manual methods. Detection schemes for cigarette butt impurities based on computer vision and deep learning are still difficult. The scarcity of images containing foreign impurities in cigarette butts and the small size of impurities limit the efficient application of deep learning algorithms. In view of the small impurities' characteristics, this paper optimizes the model structure of the YOLOv7 algorithm, and only retains the two detection head structures with high feature resolution, which reduces the model parameters by 29.68%. Using online data augmentation and transfer learning, the difficulty of small sample datasets is overcome. After the CutMix, Mosaic, Affine transformation, Copy-paste data augmentation in this paper, the model precision is increased by 6.95%, and the recall rate is increased by 10.51%. Detection FPS has been increased from 99 FPS to 111 FPS. Precision and recall rate reached 97.21% and 92.11%. Compared with YOLOv4_csp, the precision is in-creased by 11.58%, and the recall rate is increased by 0.48%. It shows that the improved YOLOv7xs model has the potential for wide application in small target recognition. At the same time, it has shown the potential to avoid the harm of toxic substances produced by cigarette impurities in the combustion process and promotes the application of computer vision and deep learning in industrial production.
引用
收藏
页码:48136 / 48144
页数:9
相关论文
共 50 条
  • [31] Co-Learning for Few-Shot Learning
    Xu, Rui
    Xing, Lei
    Shao, Shuai
    Liu, Baodi
    Zhang, Kai
    Liu, Weifeng
    NEURAL PROCESSING LETTERS, 2022, 54 (04) : 3339 - 3356
  • [32] Federated Few-Shot Learning with Adversarial Learning
    Fan, Chenyou
    Huang, Jianwei
    2021 19TH INTERNATIONAL SYMPOSIUM ON MODELING AND OPTIMIZATION IN MOBILE, AD HOC, AND WIRELESS NETWORKS (WIOPT), 2021,
  • [33] Personalized Federated Few-Shot Learning
    Zhao, Yunfeng
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Guo, Maozu
    Zhang, Xiangliang
    Cui, Lizhen
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) : 2534 - 2544
  • [34] Few-Shot Classification with Contrastive Learning
    Yang, Zhanyuan
    Wang, Jinghua
    Zhu, Yingying
    COMPUTER VISION, ECCV 2022, PT XX, 2022, 13680 : 293 - 309
  • [35] A Feature Generator for Few-Shot Learning
    Kanagalingam, Heethanjan
    Pathmanathan, Thenukan
    Ketheeswaran, Navaneethan
    Vathanakumar, Mokeeshan
    Afham, Mohamed
    Rodrigo, Ranga
    arXiv,
  • [36] Few-shot learning for ear recognition
    Zhang, Jie
    Yu, Wen
    Yang, Xudong
    Deng, Fang
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON IMAGE, VIDEO AND SIGNAL PROCESSING (IVSP 2019), 2019, : 50 - 54
  • [37] Few-Shot Learning with Novelty Detection
    Bjerge, Kim
    Bodesheim, Paul
    Karstoft, Henrik
    DEEP LEARNING THEORY AND APPLICATIONS, PT I, DELTA 2024, 2024, 2171 : 340 - 363
  • [38] Prototype Completion for Few-Shot Learning
    Zhang, Baoquan
    Li, Xutao
    Ye, Yunming
    Feng, Shanshan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12250 - 12268
  • [39] Few-Shot Learning With a Strong Teacher
    Ye, Han-Jia
    Ming, Lu
    Zhan, De-Chuan
    Chao, Wei-Lun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (03) : 1425 - 1440
  • [40] Local Propagation for Few-Shot Learning
    Lifchitz, Yann
    Avrithis, Yannis
    Picard, Sylvaine
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 10457 - 10464