A survey on hyperspectral image restoration: from the view of low-rank tensor approximation

被引:27
|
作者
Liu, Na [1 ,2 ]
Li, Wei [1 ,2 ]
Wang, Yinjian [1 ,2 ]
Tao, Ran [1 ,2 ]
Du, Qian [3 ]
Chanussot, Jocelyn [2 ,4 ,5 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
[3] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
[4] Univ Grenoble Alpes, GIPSA Lab, F-38000 Grenoble, France
[5] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
基金
国家重点研发计划; 中国博士后科学基金; 中国国家自然科学基金; 北京市自然科学基金;
关键词
hyperspectral image; image restoration; low-rank tensor approximation; multisource fusion; remote sensing; REMOTE-SENSING IMAGES; MULTISPECTRAL IMAGES; MATRIX RECOVERY; STRIPING NOISE; GROUP-SPARSE; SUPERRESOLUTION; FUSION; DECOMPOSITION; WAVELET; REPRESENTATION;
D O I
10.1007/s11432-022-3609-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ability to capture fine spectral discriminative information enables hyperspectral images (HSIs) to observe, detect and identify objects with subtle spectral discrepancy. However, the captured HSIs may not represent the true distribution of ground objects and the received reflectance at imaging instruments may be degraded, owing to environmental disturbances, atmospheric effects, and sensors' hardware limitations. These degradations include but are not limited to complex noise, heavy stripes, deadlines, cloud/shadow occlusion, blurring and spatial-resolution degradation, etc. These degradations dramatically reduce the quality and usefulness of HSIs. Low-rank tensor approximation (LRTA) is such an emerging technique, having gained much attention in the HSI restoration community, with an ever-growing theoretical foundation and pivotal technological innovation. Compared to low-rank matrix approximation (LRMA), LRTA characterizes more complex intrinsic structures of high-order data and owns more efficient learning abilities, being established to address convex and non-convex inverse optimization problems induced by HSI restoration. This survey mainly attempts to present a sophisticated, cutting-edge, and comprehensive technical survey of LRTA toward HSI restoration, specifically focusing on the following six topics: denoising, fusion, destriping, inpainting, deblurring, and super-resolution. For each topic, state-of-the-art restoration methods are introduced, with quantitative and visual performance assessments. Open issues and challenges are also presented, including model formulation, algorithm design, prior exploration, and application concerning the interpretation requirements.
引用
收藏
页数:31
相关论文
共 50 条
  • [41] COUPLED TENSOR LOW-RANK MULTILINEAR APPROXIMATION FOR HYPERSPECTRAL SUPER-RESOLUTION
    Prevost, C.
    Usevich, K.
    Comon, P.
    Brie, D.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5536 - 5540
  • [42] Automatic Hyperspectral Image Restoration Using Sparse and Low-Rank Modeling
    Rasti, Behnood
    Ulfarsson, Magnus Orn
    Ghamisi, Pedram
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (12) : 2335 - 2339
  • [43] Hyperspectral Image Restoration: Where Does the Low-Rank Property Exist
    Chang, Yi
    Yan, Luxin
    Chen, Bingling
    Zhong, Sheng
    Tian, Yonghong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (08): : 6869 - 6884
  • [44] A guidable nonlocal low-rank approximation model for hyperspectral image denoising
    Chen, Yong
    Zhang, Juan
    Zeng, Jinshan
    Lai, Wenzhen
    Gui, Xinfeng
    Jiang, Tai-Xiang
    SIGNAL PROCESSING, 2024, 215
  • [45] HYPERSPECTRAL IMAGE DENOISING VIA SPECTRAL AND SPATIAL LOW-RANK APPROXIMATION
    Chang, Yi
    Yan, Luxin
    Zhong, Sheng
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4193 - 4196
  • [46] Hyperspectral Image Restoration via Tensor Multimode Low-Rank Prior and Spatial-Spectral Smoothness Regularization
    Jiang, Heng
    Xu, Chen
    Liu, Lilin
    COMPUTERS & ELECTRICAL ENGINEERING, 2024, 115
  • [47] On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
    Yuning Yang
    Journal of Optimization Theory and Applications, 2022, 194 : 821 - 851
  • [48] On Approximation Algorithm for Orthogonal Low-Rank Tensor Approximation
    Yang, Yuning
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (03) : 821 - 851
  • [49] Hyperspectral Image Super-Resolution via Nonlocal Low-Rank Tensor Approximation and Total Variation Regularization
    Wang, Yao
    Chen, Xi'ai
    Han, Zhi
    He, Shiying
    REMOTE SENSING, 2017, 9 (12):
  • [50] Low-rank Tensor Restoration for ERP extraction
    Bonab, Zahra Sohrabi
    Shamsollahi, Mohammad B.
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 87