Improved landslide susceptibility mapping using unsupervised and supervised collaborative machine learning models

被引:27
|
作者
Su, Chenxu [1 ]
Wang, Bijiao [1 ]
Lv, Yunhong [1 ]
Zhang, Mingpeng [1 ]
Peng, Dalei [2 ]
Bate, Bate [1 ,3 ]
Zhang, Shuai [1 ,3 ]
机构
[1] Zhejiang Univ, Dept Civil Engn, Hangzhou, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Civil & Environm Engn, Clear Water Bay, Hong Kong, Peoples R China
[3] Zhejiang Univ, MOE Key Lab Soft Soils & Geoenvironm Engn, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Landslide susceptibility; machine learning; remote sensing; earthquake; risk; LOGISTIC-REGRESSION; SPATIAL PREDICTION; NEURAL-NETWORKS; EARTHQUAKE; CLASSIFICATION; REGION; COUNTY;
D O I
10.1080/17499518.2022.2088802
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
Datasets containing recorded landslide and non-landslide samples can greatly influence the performance of machine learning (ML) models, which are commonly used in landslide susceptibility mapping (LSM). However, the non-landslide samples cannot be directly obtained. In this study, a pattern-based approach is proposed to improve the LSM process, constructing unsupervised machine learning (UML) - supervised machine learning (SML) collaborative models in which the non-landslide samples can be reasonably selected. Two UML models, the Gaussian mixture model (GMM) and K-means, are introduced to sample the non-landslide datasets with four sampling selections (abbreviated as A, B, C and D, respectively). Then non-landslide patterns recognised by the UML models are learned by the random forest (RF). A new sensitivity index, accuracy improvement ratio (AIR), is defined to evaluate the superiority of these sampling selections. Compared with the GMM-RF model, the K-means-RF model is more capable of recognising non-landslide patterns and providing sufficient and reliable non-landslide samples. The sampling selection A of the K-means-RF with an AIR value of 2.3 is regarded as the best selection. The results indicate that the UML-SML model based on the pattern-based approach offers an effective strategy to find the non-landslide samples and has a better solution to the LSM.
引用
收藏
页码:387 / 405
页数:19
相关论文
共 50 条
  • [21] Landslide Susceptibility Mapping Using Machine Learning: A Danish Case Study
    Ageenko, Angelina
    Hansen, Laerke Christina
    Lyng, Kevin Lundholm
    Bodum, Lars
    Arsanjani, Jamal Jokar
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2022, 11 (06)
  • [22] Assessing and mapping landslide susceptibility using different machine learning methods
    Orhan, Osman
    Bilgilioglu, Suleyman Sefa
    Kaya, Zehra
    Ozcan, Adem Kursat
    Bilgilioglu, Hacer
    GEOCARTO INTERNATIONAL, 2022, 37 (10) : 2795 - 2820
  • [23] Landslide Susceptibility Mapping in a Mountainous Area Using Machine Learning Algorithms
    Shahabi, Himan
    Ahmadi, Reza
    Alizadeh, Mohsen
    Hashim, Mazlan
    Al-Ansari, Nadhir
    Shirzadi, Ataollah
    Wolf, Isabelle D.
    Ariffin, Effi Helmy
    REMOTE SENSING, 2023, 15 (12)
  • [24] Landslide Susceptibility Mapping Using Machine Learning: A Case Study of Oregon
    Wu, Bin
    Shi, Zhenming
    Peng, Ming
    GEOSHANGHAI 2024 INTERNATIONAL CONFERENCE, VOL 5, 2024, 1334
  • [25] Comparative assessment of machine learning models for landslide susceptibility mapping: a focus on validation and accuracy
    Abdelkader, Mohamed M.
    Csamer, Arpad
    NATURAL HAZARDS, 2025,
  • [26] Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping
    Huang, Faming
    Cao, Zhongshan
    Guo, Jianfei
    Jiang, Shui-Hua
    Li, Shu
    Guo, Zizheng
    CATENA, 2020, 191
  • [27] A comparison of different machine learning models for landslide susceptibility mapping in Rize (Türkiye)
    Bilgilioglu, Hacer
    BALTICA, 2023, 36 (02): : 115 - 132
  • [28] Landslide susceptibility mapping using state-of-the-art machine learning ensembles
    Pham, Binh Thai
    Vu, Vinh Duy
    Costache, Romulus
    Phong, Tran Van
    Ngo, Trinh Quoc
    Tran, Trung-Hieu
    Nguyen, Huu Duy
    Amiri, Mahdis
    Tan, Mai Thanh
    Trinh, Phan Trong
    Le, Hiep Van
    Prakash, Indra
    GEOCARTO INTERNATIONAL, 2022, 37 (18) : 5175 - 5200
  • [29] Landslide Susceptibility Mapping Using Single Machine Learning Models: A Case Study from Pithoragarh District, India
    Trinh Quoc Ngo
    Nguyen Duc Dam
    Al-Ansari, Nadhir
    Amiri, Mahdis
    Tran Van Phong
    Prakash, Indra
    Hiep Van Le
    Hanh Bich Thi Nguyen
    Binh Thai Pham
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [30] Susceptibility mapping of groundwater salinity using machine learning models
    Amirhosein Mosavi
    Farzaneh Sajedi Hosseini
    Bahram Choubin
    Fereshteh Taromideh
    Marzieh Ghodsi
    Bijan Nazari
    Adrienn A. Dineva
    Environmental Science and Pollution Research, 2021, 28 : 10804 - 10817