Effect of wiggler magnetic field on wakefield excitation and electron energy gain in laser wakefield acceleration

被引:13
|
作者
Sharma, Vivek [1 ]
Kumar, Sandeep [2 ]
Kant, Niti [3 ]
Thakur, Vishal [1 ]
机构
[1] Lovely Profess Univ, Dept Phys, GT Rd, Phagwara 144411, Punjab, India
[2] Manav Rachna Univ, Dept Phys, Faridabad, India
[3] Univ Allahabad, Dept Phys, Allahabad 211002, India
关键词
laser wakefield acceleration; linear polarized laser pulse; wiggler magnetic field; energy gain; energy efficiency; EXPONENTIAL DENSITY RAMP; 2ND-HARMONIC GENERATION; WAKE-FIELD; PULSE LASER; PLASMA; PROFILE;
D O I
10.1515/zna-2023-0238
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Laser wakefield acceleration is a frequently utilised research methodology for enhancing the energy levels of lighter charged particles, specifically electrons, to relativistic magnitudes. In this investigation, we utilised a linear polarised Gaussian-like laser pulse that propagated along the z-axis through cold collisionless underdense plasma in weakly nonlinear regime. An external planer magnetic wiggler field is applied along the y-axis. The influence of various critical parameters, such as amplitude and propagation constant of wiggler magnetic field, amplitude of laser electric field and laser pulse length on the wakefield and electron energy gain has been studied. A wiggler-assisted laser wakefield accelerator, the electron energy and wakefield evolution can be tuned by the wiggler magnetic field strength. The numerical findings demonstrate that by varying the strength of wiggler magnetic field and laser electric field, the amplitude of the wakefield is affected significantly. Furthermore, the equality of the order of pulse length and plasma wavelength is essential to obtain energy efficient acceleration mechanism. By employing specific parameters, a maximum energy increase of 2.26 GeV is achieved. This research will aid in the development of an energy-efficient electron acceleration technology by choosing suitable laser and plasma parameters.
引用
收藏
页码:199 / 205
页数:7
相关论文
共 50 条
  • [21] Electron acceleration in the wakefield of asymmetric laser pulses
    Xie, B. -S.
    Aimidula, A.
    Niu, J-S
    Liu, J.
    Yu, M. Y.
    LASER AND PARTICLE BEAMS, 2009, 27 (01) : 27 - 32
  • [22] EXCITATION OF WAKEFIELD AND ELECTRON ACCELERATION BY SHORT MICROWAVE PULSE
    NISHIDA, Y
    KUSAKA, S
    YUGAMI, N
    PHYSICA SCRIPTA, 1994, T52 : 65 - 68
  • [23] Investigation of electron beam parameters in laser wakefield acceleration using skewed laser pulse and external magnetic field
    Gopal, K.
    Gupta, D. N.
    Jain, A.
    Hur, M. S.
    Suk, H.
    CURRENT APPLIED PHYSICS, 2021, 25 : 82 - 89
  • [24] Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration
    Hosokai, Tomonao
    Kinoshita, Kenichi
    Zhidkov, Alexei
    Maekawa, Akira
    Yamazaki, Atsushi
    Uesaka, Mitsuru
    PHYSICAL REVIEW LETTERS, 2006, 97 (07)
  • [25] Effect of the frequency chirp on laser wakefield acceleration
    Pathak, V. B.
    Vieira, J.
    Fonseca, R. A.
    Silva, L. O.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [26] On the production of flat electron bunches for laser wakefield acceleration
    M. Kando
    Y. Fukuda
    H. Kotaki
    J. Koga
    S. V. Bulanov
    T. Tajima
    A. Chao
    R. Pitthan
    K. -P. Schuler
    A. G. Zhidkov
    K. Nemoto
    Journal of Experimental and Theoretical Physics, 2007, 105 : 916 - 926
  • [27] Laser wakefield electron acceleration for γ-ray radiography application
    Wu, Yuchi
    Zhao, Zongqing
    Zhu, Bin
    Dong, Kegong
    Wen, Xianlun
    He, Yingling
    Gu, Yuqiu
    Zhang, Baohan
    CHINESE OPTICS LETTERS, 2012, 10 (06)
  • [28] Simulation of laser wakefield acceleration of an ultrashort electron bunch
    Reitsma, AJW
    Goloviznin, VV
    Kamp, LPJ
    Schep, TJ
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [29] Electron bunch evolution in laser-wakefield acceleration
    Cardenas, D. E.
    Chou, S.
    Wallin, E.
    Xu, J.
    Hofmann, L.
    Buck, A.
    Schmid, K.
    Rivas, D. E.
    Shen, B.
    Gonoskov, A.
    Marklund, M.
    Veisz, L.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (11):
  • [30] Laser wakefield electron acceleration for γ-ray radiography application
    吴玉迟
    赵宗清
    朱斌
    董克攻
    温贤伦
    何颖玲
    谷渝秋
    张保汉
    Chinese Optics Letters, 2012, 10 (06) : 89 - 92