Improved CNN-based CatBoost model for license plate remote sensing image classification

被引:8
|
作者
Zhang, Songhua [1 ]
Lu, Xiuling [1 ]
Lu, Zhangjie [1 ]
机构
[1] Hunan Inst Technol, Sch Elect & Informat Engn, Hengyang 421002, Peoples R China
关键词
Remote sensing; License plate image classification; CatBoost; Convolutional neural network; Deep learning;
D O I
10.1016/j.sigpro.2023.109196
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The rapid development of artificial intelligence technology has brought profound technical changes to many traditional industries, among which intelligent transportation has become a hot spot for development in the traditional transportation field. Remote sensing license plate image recognition technology is extensively emphasized in such domains as intelligent transportation and intelligent vehicle management. However, in the practical traffic environment, low visibility scenes caused by complex environmental factors such as rain, snow, haze and cloudy days influence the recognition and classification of license plates, while the distortion of license plate images that may be caused by irregular movements of vehicles bring challenges to license plate recognition classification. The CNN-CatBoost model proposed in this paper divides the license plate recognition classification into two stages. The first stage uses the excellent performance of convolutional neural network in processing image data to extract various license plate image features; the second stage uses the CatBoost module to further process the image feature data and finally obtain the remote sensing license plate information. The model achieves outstanding results in the experiments and has practical application value. Through comparison with other network models, the CNN-CatBoost model proposed in this paper has superior performance.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] An improved CNN-based architecture for automatic lung nodule classification
    Sozan Abdullah Mahmood
    Hunar Abubakir Ahmed
    Medical & Biological Engineering & Computing, 2022, 60 : 1977 - 1986
  • [32] RETRACTED ARTICLE: Improved CNN license plate image recognition based on shark odor optimization algorithm
    Chuanxu Cheng
    Ashutosh Sharma
    International Journal of System Assurance Engineering and Management, 2023, 14 : 490 - 490
  • [33] An improved CNN-based architecture for automatic lung nodule classification
    Mahmood, Sozan Abdullah
    Ahmed, Hunar Abubakir
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022, 60 (07) : 1977 - 1986
  • [34] A Degradation Type Adaptive and Deep CNN-Based Image Classification Model for Degraded Images
    Liu, Huanhua
    Wang, Wei
    Liu, Hanyu
    Yi, Shuheng
    Yu, Yonghao
    Yao, Xunwen
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (01): : 459 - 472
  • [35] FPGA Implementation for CNN-Based Optical Remote Sensing Object Detection
    Zhang, Ning
    Wei, Xin
    Chen, He
    Liu, Wenchao
    ELECTRONICS, 2021, 10 (03) : 1 - 24
  • [36] A CNN-Based High-Accuracy Registration for Remote Sensing Images
    Lee, Wooju
    Sim, Donggyu
    Oh, Seoung-Jun
    REMOTE SENSING, 2021, 13 (08)
  • [37] Perceptual Evaluation of Adversarial Attacks for CNN-based Image Classification
    Fezza, Sid Ahmed
    Bakhti, Yassine
    Hamidouche, Wassim
    Deforges, Olivier
    2019 ELEVENTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2019,
  • [38] Does Haze Removal Help CNN-Based Image Classification?
    Pei, Yanting
    Huang, Yaping
    Zou, Qi
    Lu, Yuhang
    Wang, Song
    COMPUTER VISION - ECCV 2018, PT X, 2018, 11214 : 697 - 712
  • [39] A Configurable Accelerator for CNN-Based Remote Sensing Object Detection on FPGAs
    Shao, Yingzhao
    Shang, Jincheng
    Li, Yunsong
    Ding, Yueli
    Zhang, Mingming
    Ren, Ke
    Liu, Yang
    IET COMPUTERS AND DIGITAL TECHNIQUES, 2024, 2024
  • [40] A Classification of Remote Sensing Image Based on Improved Compound Kernels of Svm
    Zhao, Jianing
    Gao, Wanlin
    Liu, Zili
    Mou, Guifen
    Lu, Lin
    Yu, Lina
    COMPUTER AND COMPUTING TECHNOLOGIES IN AGRICULTURE III, 2010, 317 : 15 - +