LEVERAGING LARGE LANGUAGE MODELS WITH VOCABULARY SHARING FOR SIGN LANGUAGE TRANSLATION

被引:1
|
作者
Lee, Huije [1 ]
Kim, Jung-Ho [1 ]
Hwang, Eui Jun [1 ]
Kim, Jaewoo [1 ]
Park, Jong C. [1 ]
机构
[1] Korea Adv Inst Sci & Technol, NLP CL Lab, Sch Comp, Daejeon, South Korea
关键词
machine translation; sign language translation; large language model; vocabulary sharing;
D O I
10.1109/ICASSPW59220.2023.10193533
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Sign language translation (SLT) is a task that provides translation between spoken and sign languages used in the same country, which tend to show high lexical similarity but low syntactic similarity. The recent emergence of large language models (LLMs) has been remarkable for all downstream tasks in natural language processing, but they have yet to be applied to SLT. In this paper, we explore how to use an LLM with vocabulary sharing for two gloss-based SLT tasks (text-to-gloss (T2G) and gloss-to-text (G2T)) on the NIASL2021 dataset, which consists of 180,848 preprocessed Korean and Korean Sign Language (KSL) sentence pairs. The experimental results showed that Ko-GPT-Trinity-1.2B+VS, a GPT-3-based SLT model with vocabulary sharing, outperformed other SLT models, achieving BLEU-4 scores of 22.06 and 45.89 on T2G and G2T tasks, respectively. We expect that the adoption of an LLM with vocabulary sharing will significantly lessen the resource scarcity problem of SLT.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Leveraging large language models for data analysis automation
    Jansen, Jacqueline A.
    Manukyan, Artur
    Al Khoury, Nour
    Akalin, Altuna
    PLOS ONE, 2025, 20 (02):
  • [22] MicroRec: Leveraging Large Language Models for Microservice Recommendation
    Alsayed, Ahmed Saeed
    Dam, Hoa Khanh
    Nguyen, Chau
    2024 IEEE/ACM 21ST INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2024, : 419 - 430
  • [23] Leveraging Large Language Models for Sensor Data Retrieval
    Berenguer, Alberto
    Morejon, Adriana
    Tomas, David
    Mazon, Jose-Norberto
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [24] Leveraging Large Language Models for Navigating Brand Territory
    Luisa Fernanda Rodriguez-Sarmiento
    Vladimir Sanchez-Riaño
    Ixent Galpin
    SN Computer Science, 5 (8)
  • [25] Leveraging large language models for word sense disambiguation
    Jung H. Yae
    Nolan C. Skelly
    Neil C. Ranly
    Phillip M. LaCasse
    Neural Computing and Applications, 2025, 37 (6) : 4093 - 4110
  • [26] Leveraging Large Language Models for VNF Resource Forecasting
    Su, Jing
    Nair, Suku
    Popokh, Leo
    2024 IEEE 10TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION, NETSOFT 2024, 2024, : 258 - 262
  • [27] Leveraging Large Language Models for Effective Organizational Navigation
    Chandrasekar, Haresh
    Gupta, Srishti
    Liu, Chun-Tzu
    Tsai, Chun-Hua
    PROCEEDINGS OF THE 25TH ANNUAL INTERNATIONAL CONFERENCE ON DIGITAL GOVERNMENT RESEARCH, DGO 2024, 2024, : 1020 - 1022
  • [28] Leveraging large language models to foster equity in healthcare
    Rodriguez, Jorge A.
    Alsentzer, Emily
    Bates, David W.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (09)
  • [29] Leveraging Large Language Models for Clinical Abbreviation Disambiguation
    Hosseini, Manda
    Hosseini, Mandana
    Javidan, Reza
    JOURNAL OF MEDICAL SYSTEMS, 2024, 48 (01)
  • [30] Leveraging large language models for peptide antibiotic design
    Guan, Changge
    Fernandes, Fabiano C.
    Franco, Octavio L.
    de la Fuente-nunez, Cesar
    CELL REPORTS PHYSICAL SCIENCE, 2025, 6 (01):