Multi-objective chaos game optimization

被引:20
|
作者
Khodadadi, Nima [1 ]
Abualigah, Laith [2 ,7 ,8 ,9 ]
Al-Tashi, Qasem [3 ,4 ]
Mirjalili, Seyedali [5 ,6 ,10 ]
机构
[1] Univ Miami, Dept Civil Architectural & Environm Engn, 1251 Mem Dr, Coral Gables, FL 33146 USA
[2] Middle East Univ, MEU Res Unit, Amman 11831, Jordan
[3] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
[4] Univ Albaydha, Albaydha, Yemen
[5] Torrens Univ Australia, Ctr Artificial Intelligence Res & Optimizat, Sydney, Australia
[6] Yonsei Univ, Yonsei Frontier Lab, Seoul, South Korea
[7] Al Ahliyya Amman Univ, Hourani Ctr Appl Sci Res, Amman 19328, Jordan
[8] Al al Bayt Univ, Prince Hussein Bin Abdullah Fac Informat Technol, Comp Sci Dept, Mafraq 25113, Jordan
[9] Appl Sci Private Univ, Appl Sci Res Ctr, Amman 11931, Jordan
[10] Obuda Univ, Univ Res & Innovat Ctr, H-1034 Budapest, Hungary
来源
NEURAL COMPUTING & APPLICATIONS | 2023年 / 35卷 / 20期
关键词
Algorithm; Bechmark; Artificial Intelligence; Multi-objective optimization; CEC benchmark; Chaos game optimization; Engineering problems; Optimization; GREY WOLF OPTIMIZER; EVOLUTIONARY ALGORITHMS;
D O I
10.1007/s00521-023-08432-0
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The Chaos Game Optimization (CGO) has only recently gained popularity, but its effective searching capabilities have a lot of potential for addressing single-objective optimization issues. Despite its advantages, this method can only tackle problems formulated with one objective. The multi-objective CGO proposed in this study is utilized to handle the problems with several objectives (MOCGO). In MOCGO, Pareto-optimal solutions are stored in a fixed-sized external archive. In addition, the leader selection functionality needed to carry out multi-objective optimization has been included in CGO. The technique is also applied to eight real-world engineering design challenges with multiple objectives. The MOCGO algorithm uses several mathematical models in chaos theory and fractals inherited from CGO. This algorithm's performance is evaluated using seventeen case studies, such as CEC-09, ZDT, and DTLZ. Six well-known multi-objective algorithms are compared with MOCGO using four different performance metrics. The results demonstrate that the suggested method is better than existing ones. These Pareto-optimal solutions show excellent convergence and coverage.
引用
收藏
页码:14973 / 15004
页数:32
相关论文
共 50 条
  • [21] The Multi-objective Water Resources Optimization Scheduling based on Chaos Genetic Algorithm
    Zhao Xiao-qiang
    He Zhi-e
    2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 4500 - 4505
  • [22] Multi-objective optimization of engineering systems using game theory and particle swarm optimization
    Annamdas, Kiran K.
    Rao, Singiresu S.
    ENGINEERING OPTIMIZATION, 2009, 41 (08) : 737 - 752
  • [23] A Multi-objective Hybrid Optimization Algorithm Based on Parallel Chaos and Harmony Search
    Yuan, Xiaofang
    Liu, Jinwei
    Chen, Qiuyi
    Wan, Changjing
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2018, 45 (04): : 96 - 103
  • [24] The Robust Weighted Multi-Objective Game
    Qu, Shaojian
    Ji, Ying
    Goh, Mark
    PLOS ONE, 2015, 10 (09):
  • [25] Modified Multi-Objective Particle Swarm Optimization Algorithm for Multi-objective Optimization Problems
    Qiao, Ying
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 520 - 527
  • [26] Multi-objective Reactive Power Optimization Based on Refined Chaos Particle Swarm Optimization Algorithm
    Ai, Ying
    Nie, Hongwei
    Su, Yixin
    Zhang, Danhong
    Peng, Yao
    CURRENT DEVELOPMENT OF MECHANICAL ENGINEERING AND ENERGY, PTS 1 AND 2, 2014, 494-495 : 1857 - +
  • [27] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [28] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [29] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [30] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711