Research on Transformer Voiceprint Anomaly Detection Based on Data-Driven

被引:3
|
作者
Yu, Da [1 ]
Zhang, Wei [1 ]
Wang, Hui [2 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Informat & Automat, Jinan, Peoples R China
[2] Shandong Univ, Dept Elect Engn, Jinan 250061, Peoples R China
关键词
transformer sound diagnostics; attention mechanism; Mel cepstrum coefficient; Attention-CNN-LSTM; ATTENTION MECHANISM; POWER TRANSFORMERS; DIAGNOSIS;
D O I
10.3390/en16052151
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Condition diagnosis of power transformers using acoustic signals is a nonstop, contactless method of equipment maintenance that can diagnose the transformer's type of abnormal condition. To heighten the accuracy and efficiency of the abnormal method of diagnosing abnormalities by sound, a method for abnormal diagnosis of power transformers based on the Attention-CNN-LSTM hybrid model is proposed. This collects the sound signals emitted by the real power transformer in the normal state, overload, and the discharge condition. It preprocesses the sound signals to obtain the MFCC characteristics of the sound signals. It is then grouped into a set of sound feature vectors by the first- and second-order differences, and enters the Attention-CNN-LSTM hybrid model for training. The training results show that the Attention-CNN-LSTM hybrid model can be used for the status sound detection of power transformers, and the recognition of the three states can achieve an accuracy rate of more than 99%.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Data-driven Anomaly Detection for Power System Generation Control
    Wang, Pengyuan
    Govindarasu, Manimaran
    Ashok, Aditya
    Sridhar, Siddharth
    McKinnon, David
    [J]. 2017 17TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2017), 2017, : 1082 - 1089
  • [32] An Online Data-Driven Technique for the Detection of Transformer Winding Deformations
    Hong, Tianqi
    Deswal, Digvijay
    de Leon, Francisco
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2018, 33 (02) : 600 - 609
  • [33] AI-based Anomaly Detection for Data-driven Decisions in Secure Smart Cities
    Laemmel, Philipp
    Borgert, Stephan
    Brunzel, Lisa
    Darius, Paul
    [J]. ERCIM NEWS, 2024, (138):
  • [34] Audio Data-driven Anomaly Detection for Induction Motor Based on Generative Adversarial Networks
    Shim, Jaehoon
    Joung, Taesuk
    Lee, Sangwon
    Ha, Jung-Ik
    [J]. 2022 IEEE ENERGY CONVERSION CONGRESS AND EXPOSITION (ECCE), 2022,
  • [35] A data-driven metric learning-based scheme for unsupervised network anomaly detection
    Aliakbarisani, Roya
    Ghasemi, Abdorasoul
    Wu, Shyhtsun Felix
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2019, 73 : 71 - 83
  • [36] Temporal Data-Driven Sleep Scheduling and Spatial Data-Driven Anomaly Detection for Clustered Wireless Sensor Networks
    Li, Gang
    He, Bin
    Huang, Hongwei
    Tang, Limin
    [J]. SENSORS, 2016, 16 (10)
  • [37] Data-Driven Anomaly Detection Approach for Time-Series Streaming Data
    Zhang, Minghu
    Guo, Jianwen
    Li, Xin
    Jin, Rui
    [J]. SENSORS, 2020, 20 (19) : 1 - 17
  • [38] Anomaly detection in streaming environmental sensor data: A data-driven modeling approach
    Hill, David J.
    Minsker, Barbara S.
    [J]. ENVIRONMENTAL MODELLING & SOFTWARE, 2010, 25 (09) : 1014 - 1022
  • [39] Data-Driven Anomaly Detection and Event Log Profiling of SCADA Alarms
    Andrade, J.R.
    Rocha, C.
    Silva, R.
    Viana, J.P.
    Bessa, Ricardo J.
    Gouveia, C.
    Almeida, B.
    Santos, R.J.
    Louro, M.
    Santos, P.M.
    Ribeiro, A.F.
    [J]. IEEE Access, 2022, 10 : 73758 - 73773
  • [40] Early anomaly detection and localisation in distribution network: a data-driven approach
    Shi, Xin
    Qiu, Robert
    He, Xing
    Ling, Zenan
    Yang, Haosen
    Chu, Lei
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2020, 14 (18) : 3814 - 3825