Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries

被引:140
|
作者
Zhang, Nan [1 ,2 ]
Wang, Jian-Cang [1 ,2 ]
Guo, Ya-Fei [1 ,2 ]
Wang, Peng-Fei [2 ]
Zhu, Yan-Rong [2 ]
Yi, Ting-Feng [1 ,2 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Northeastern Univ Qinhuangdao, Sch Resources & Mat, Key Lab Dielect & Electrolyte Funct Mat Hebei Prov, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Aqueous Zn-ion battery; Manganese-based material; Energy storage mechanism; Cathode; Electrochemical performance; ENHANCED SUPERCAPACITOR PERFORMANCE; METAL-ORGANIC FRAMEWORK; MANGANESE OXIDE; ZN-ION; HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCES; HYDROTHERMAL SYNTHESIS; PHASE-TRANSFORMATION; BETA-MNO2; NANORODS; EFFICIENT CATHODE;
D O I
10.1016/j.ccr.2022.215009
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
Benefiting from the low cost, high safety and environmentally friendly characteristics, aqueous second zinc ion batteries (AZIBs) have attracted wide attention. The electrochemical performance of the AZIBs is highly influenced by cathode materials. Mn-based compounds are deemed as promising cathode mate-rials for AZIBs because of their various crystal structures and three-dimensional spatial frameworks. However, the diversity in crystal structure and chemical constituent for Mn-based compounds lead to a distinction of energy storage mechanisms, which engenders tremendous discrepancy in electrochemi-cal properties. Herein, a state-of-the-art review of the rational construction of high-performance Mn-based cathodes of AZIBs is presented. Firstly, the energy storage mechanisms of Mn-based cathodes are systematically clarified. Accordingly, the reasonable strategies including morphology design, surface modification, defect engineering, structure modulation are comprehensively summarized. At last, the challenges, future developments, and prospects of Mn-based materials for AZIBs are prospected. This review provides an important understanding for the design and optimization of high-performance Mn-based cathodes materials, which can be expected to shed light on the future development of stable Mn-based cathodes toward high-performance AZIBs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:55
相关论文
共 50 条
  • [41] Establishing aqueous zinc-ion batteries for sustainable energy storage
    Zhao, Jingxin
    Lu, Hongyu
    Peng, Jianhong
    Li, Xifei
    Zhang, Jiujun
    Xu, Bingang
    ENERGY STORAGE MATERIALS, 2023, 60
  • [42] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12
  • [43] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Pu, Xuechao
    Jiang, Baozheng
    Wang, Xianli
    Liu, Wenbao
    Dong, Liubing
    Kang, Feiyu
    Xu, Chengjun
    NANO-MICRO LETTERS, 2020, 12 (01)
  • [44] High-Performance Aqueous Zinc-Ion Batteries Realized by MOF Materials
    Xuechao Pu
    Baozheng Jiang
    Xianli Wang
    Wenbao Liu
    Liubing Dong
    Feiyu Kang
    Chengjun Xu
    Nano-Micro Letters, 2020, 12 (11) : 130 - 144
  • [45] High energy storage performance MnSe2 cathode by one-step deposition strategy in aqueous zinc-ion batteries
    Li, Xueming
    Xie, Jiwei
    Liu, Guijing
    Ding, Junjie
    Zhang, Beibei
    Zheng, Hui
    Fan, Leqing
    Tang, Yuanhan
    Ma, Xintao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 937
  • [46] Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density
    Gao, Yuan
    Yin, Junyi
    Xu, Xin
    Cheng, Yonghong
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (18) : 9773 - 9787
  • [47] Mixed copper-zinc hexacyanoferrates as cathode materials for aqueous zinc-ion batteries
    Kasiri, Ghoncheh
    Glenneberg, Jens
    Hashemi, Amir Bani
    Kun, Robert
    La Mantia, Fabio
    ENERGY STORAGE MATERIALS, 2019, 19 : 360 - 369
  • [48] Facile Synthesis of Ternary Mn/Ni/Co Oxides as Bifunctional Energy Storage Materials for High-Performance Asymmetric Supercapacitors and Aqueous Zinc-Ion Batteries
    Zhu, Yuanfang
    Chen, Mengyao
    Dong, Mengfan
    Zhang, Qiuna
    Ma, Weiwei
    Zeng, Maosheng
    Zou, Shiqi
    Sheng, Liangquan
    Yang, Zheng
    ENERGY & FUELS, 2022, 36 (14) : 7829 - 7840
  • [49] Towards high-performance cathodes: Design and energy storage mechanism of vanadium oxides-based materials for aqueous Zn-ion batteries
    Yi, Ting-Feng
    Qiu, Liying
    Qu, Jin-Peng
    Liu, Hongyan
    Zhang, Jun-Hong
    Zhu, Yan-Rong
    COORDINATION CHEMISTRY REVIEWS, 2021, 446
  • [50] Design and Conformation of Separators for High-performance Aqueous Zinc-Ion Batteries
    Niu, Ben
    Luo, Die
    He, Xianru
    Wang, Xin
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (65)