An enhanced motor imagery EEG signals prediction system in real-time based on delta rhythm

被引:3
|
作者
Abenna, Said [1 ]
Nahid, Mohammed [1 ]
Bouyghf, Hamid [1 ]
Ouacha, Brahim [1 ]
机构
[1] Hassan II Univ, Fac Sci & Technol, Casablanca, Morocco
关键词
Brain-Computer Interface (BCI); Electroencephalogram (EEG); Delta waves; Data analysis; Feature extraction; Feature selection; Machine learning; Optimization; CLASSIFICATION; DECOMPOSITION;
D O I
10.1016/j.bspc.2022.104210
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This work aims to develop a brain-computer interface (BCI) system based on electroencephalogram (EEG) signals, that is capable of remote controlling rehabilitation systems using wireless connections. This system can extract delta waves from raw EEG in real-time to predict motor imagery (MI) tasks. Where we built a simple acquisition device that acquires EEG signals using three dry electrodes, these non-invasive channels are positioned on the scalp surface at the occipital and central lobes. After the acquisition step, we amplify the signals and remove permanent noise during the preprocessing step. Then, in the feature extraction step, we extract possible features from each channel. Then, we select only some important features at the feature selection step, by the calculation of each feature's contribution score. In the classification phase using machine learning algorithms, we select the light gradient boosting machine (LGBM) algorithm enhanced by the multi -verse optimization (MVO) algorithm, which enables the building of optimum prediction models. Also, this work employed a data analysis phase. Where to evaluate the characteristics independent between features at each step, we analysed the data using the correlation matrix results. As well as, we analysed the data changes temporally and spatially between MI tasks at each step. Therefore, the classification results indicated that the system accuracy score is over 90%. While in related work, we have an accuracy value ranging between 79% and 89%. These comparative results show the best quality of our system proposed for this work-based delta wave.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] EEG-based BCI: A novel improvement for EEG signals classification based on real-time preprocessing
    Abenna, Said
    Nahid, Mohammed
    Bouyghf, Hamid
    Ouacha, Brahim
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 148
  • [22] EEG-based BCI: A novel improvement for EEG signals classification based on real-time preprocessing
    Abenna, Said
    Nahid, Mohammed
    Bouyghf, Hamid
    Ouacha, Brahim
    Computers in Biology and Medicine, 2022, 148
  • [23] A Real-time Permutation Entropy Computation for EEG Signals
    Ren, Xiaowei
    Yu, Qihang
    Chen, Badong
    Zheng, Nanning
    Ren, Pengju
    2015 20TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2015, : 20 - 21
  • [24] Motor imagery based brain-computer interface: improving the EEG classification using Delta rhythm and LightGBM algorithm
    Abenna, Said
    Nahid, Mohammed
    Bajit, Abderrahim
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [25] A Real-Time Impedance Measurement System for EEG Based on Embedded System
    Shen, Peng
    Liu, Yunqing
    Xiong, Wenqiang
    He, Aijun
    Zhang, Mengya
    2020 13TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2020), 2020, : 681 - 685
  • [26] Real-Time EEG-Based Happiness Detection System
    Jatupaiboon, Noppadon
    Pan-ngum, Setha
    Israsena, Pasin
    SCIENTIFIC WORLD JOURNAL, 2013,
  • [27] AI-Based Stroke Disease Prediction System Using Real-Time Electromyography Signals
    Yu, Jaehak
    Park, Sejin
    Kwon, Soon-Hyun
    Ho, Chee Meng Benjamin
    Pyo, Cheol-Sig
    Lee, Hansung
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [28] Classification of Motor Imagery EEG Signals Based on Channel Attention Mechanism
    Yu, Yue
    Ji, Wenkai
    Zhao, Liming
    Sun, Zhongbo
    Liu, Keping
    2023 IEEE 12TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE, DDCLS, 2023, : 1720 - 1725
  • [29] EEG Signals Based Motor Imagery and Movement Classification for BCI Applications
    Tasar, Beyda
    Yaman, Orhan
    2022 INTERNATIONAL CONFERENCE ON DECISION AID SCIENCES AND APPLICATIONS (DASA), 2022, : 1425 - 1429
  • [30] Identification of Anisomerous Motor Imagery EEG Signals Based on Complex Algorithms
    Liu, Rensong
    Zhang, Zhiwen
    Duan, Feng
    Zhou, Xin
    Meng, Zixuan
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017