Optimization strategies and advances in the research and development of AAV-based gene therapy to deliver large transgenes

被引:9
|
作者
Kolesnik, Valeria V. [1 ]
Nurtdinov, Ruslan F. [1 ]
Oloruntimehin, Ezekiel Sola [1 ]
Karabelsky, Alexander V. [2 ]
Malogolovkin, Alexander S. [1 ,2 ,3 ]
机构
[1] Sechenov Univ, Martsinovsky Inst Med Parasitol Trop & Vector Born, Moscow, Russia
[2] Sirius Univ Sci & Technol, Ctr Translat Med, Soci, Russia
[3] Sechenov Univ, Mol Virol Lab, Moscow 119435, Russia
来源
CLINICAL AND TRANSLATIONAL MEDICINE | 2024年 / 14卷 / 03期
关键词
exons remodelling; gene editing; gene therapies; inteins; minigenes; protein design; rare diseases; trans-splicing; viral deliveries; viral vectors; ADENOASSOCIATED VIRUS AAV; RATE-LIMITING STEP; IN-VIVO DELIVERY; PACKAGING CAPACITY; CIRCULAR PERMUTATION; VIRAL VECTOR; MOUSE MODEL; MEDIATED DELIVERY; MUSCLE; DYSTROPHIN;
D O I
10.1002/ctm2.1607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Adeno-associated virus (AAV)-based therapies are recognized as one of the most potent next-generation treatments for inherited and genetic diseases. However, several biological and technological aspects of AAV vectors remain a critical issue for their widespread clinical application. Among them, the limited capacity of the AAV genome significantly hinders the development of AAV-based gene therapy. In this context, genetically modified transgenes compatible with AAV are opening up new opportunities for unlimited gene therapies for many genetic disorders. Recent advances in de novo protein design and remodelling are paving the way for new, more efficient and targeted gene therapeutics. Using computational and genetic tools, AAV expression cassette and transgenic DNA can be split, miniaturized, shuffled or created from scratch to mediate efficient gene transfer into targeted cells. In this review, we highlight recent advances in AAV-based gene therapy with a focus on its use in translational research. We summarize recent research and development in gene therapy, with an emphasis on large transgenes (>4.8 kb) and optimizing strategies applied by biomedical companies in the research pipeline. We critically discuss the prospects for AAV-based treatment and some emerging challenges. We anticipate that the continued development of novel computational tools will lead to rapid advances in basic gene therapy research and translational studies.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Development and Preclinical Testing of an AAV-Based Gene Therapy Product for Parkinson's Disease
    Torre-Muruzabal, Teresa
    Lanciego, Jose L.
    Michel, Anne
    De Vin, Filip
    De Munter, Sofie
    Brouns, Tine
    Ta, Duy Tien
    Eykens, Caroline
    Thiry, Irina
    Molenberghs, Sofie
    Vuerinckx, Kristel
    D'Ostilio, Kevin
    Pita, Maria del Carmen Romero
    Weber, Marcia
    Benoy, Veronick
    Linden, Michael
    Tordo, Julie
    Henckaerts, Els
    MOLECULAR THERAPY, 2024, 32 (04) : 273 - 273
  • [22] Development of an AAV-Based MicroRNA Gene Therapy to Treat Machado-Joseph Disease
    Martier, Raygene
    Sogorb-Gonzalez, Marina
    Stricker-Shaver, Janice
    Huebener-Schmid, Jeannette
    Keskin, Sonay
    Klima, Jiri
    Toonen, Lodewijk J.
    Juhas, Stefan
    Juhasova, Jana
    Ellederova, Zdenka
    Motlik, Jan
    Haas, Eva
    van Deventer, Sander
    Konstantinova, Pavlina
    Huu Phuc Nguyen
    Evers, Melvin M.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2019, 15 : 343 - 358
  • [23] Challenges in scaling up AAV-based gene therapy manufacturing
    Jiang, Ziyu
    Dalby, Paul A.
    TRENDS IN BIOTECHNOLOGY, 2023, 41 (10) : 1268 - 1281
  • [24] AAV-BASED GENE THERAPY APPROACHES FOR THE TREATMENT OF CANAVAN DISEASE
    Jonquieres, G.
    Mersmann, N.
    Teahan, O.
    Klugmann, C. B.
    Harasta, A. E.
    Lutz, B.
    Housley, G. D.
    Klugmann, M.
    CYTOTHERAPY, 2013, 15 (04) : S12 - S12
  • [25] AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse
    Lee, E. K.
    Hu, C.
    Bhargava, R.
    Ponnusamy, R.
    Park, H.
    Novicoff, S.
    Rozengurt, N.
    Marescau, B.
    De Deyn, P.
    Stout, D.
    Schlichting, L.
    Grody, W. W.
    Cederbaum, S. D.
    Lipshutz, G. S.
    GENE THERAPY, 2013, 20 (08) : 785 - 796
  • [26] Development and validation of a recovery and purification process for recombinant AAV-based gene therapy vectors.
    Debelak, DJ
    Well, JR
    Eith, E
    Nichols, G
    Giugler, L
    Atkinson, EM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2001, 221 : U126 - U126
  • [27] Development of an AAV-Based, RNA-Targeting Gene Therapy for the Treatment of Huntington's Disease
    Geddes, Claire E.
    Roth, Daniela
    Ta, Angeline
    Wilson, Alistair
    Gutierrez, Haydee
    Narayan, Nandini
    Angelis, Dimitrios
    Fang, Lydia
    Berlin, Aaron
    Nachtrab, Greg
    Gibbs, Dan
    Zisoulis, Dimitrios
    Batra, Ranjan
    MOLECULAR THERAPY, 2021, 29 (04) : 271 - 271
  • [28] AAV-based gene therapy prevents neuropathology and results in normal cognitive development in the hyperargininemic mouse
    E K Lee
    C Hu
    R Bhargava
    R Ponnusamy
    H Park
    S Novicoff
    N Rozengurt
    B Marescau
    P De Deyn
    D Stout
    L Schlichting
    W W Grody
    S D Cederbaum
    G S Lipshutz
    Gene Therapy, 2013, 20 : 785 - 796
  • [29] DEVELOPING AAV-BASED GENE THERAPY FOR ADRENOLEUKODYSTROPHY (X-ALD)
    Ma, C.
    Zhang, Z.
    Feng, H.
    Li, C.
    Chen, L.
    Chen, J.
    Lai, L.
    Lian, Q.
    CYTOTHERAPY, 2019, 21 (05) : E14 - E14
  • [30] Low Endotoxin Control Strategy for an AAV-Based CNS Gene Therapy
    Stephansky, Stephen
    Chen, Li
    Cai, Ying
    MOLECULAR THERAPY, 2024, 32 (04) : 497 - 497