Biharmonic functions on Schrodinger networks

被引:2
|
作者
Bajunaid, Ibtesam [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Infinite graphs; Discrete Schrodinger equation; Biharmonic functions; AXIOMATICS;
D O I
10.1007/s12215-023-00979-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In an infinite graph X, the equation Delta u(x) = phi(x)u(x), phi(x) >= 0, is termed the Schrodinger equation. The solutions of this equation are named phi.-harmonic functions. This article studies varied aspects associated with these solutions: Harnack principle, minimum principle, domination principle, Dirichlet solution etc. The main thrust is the development of an abstract theory of discrete phi-biharmonic functions on X and use it for the phi-biharmonic classification of infinite graphs.
引用
收藏
页码:1277 / 1287
页数:11
相关论文
共 50 条
  • [1] (p, q)-biharmonic functions on networks
    Kurata, Hisayasu
    Yamasaki, Maretsugu
    HOKKAIDO MATHEMATICAL JOURNAL, 2024, 53 (01) : 111 - 138
  • [2] Biharmonic functions on Schrödinger networks
    Ibtesam Bajunaid
    Rendiconti del Circolo Matematico di Palermo Series 2, 2024, 73 : 1277 - 1287
  • [3] BIHARMONIC FUNCTIONS ON BIHARMONIC PLANE
    KOVALEV, VF
    MELNICHENKO, IP
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1981, (08): : 25 - 27
  • [4] CONCENTRATION FOR A BIHARMONIC SCHRODINGER EQUATION
    Wang, Dong
    PACIFIC JOURNAL OF MATHEMATICS, 2017, 289 (02) : 469 - 487
  • [5] BIHARMONIC GREENS FUNCTIONS AND BIHARMONIC DEGENERACY
    WANG, CY
    MATHEMATICA SCANDINAVICA, 1975, 37 (01) : 122 - 128
  • [6] Stabilization and Control for the Biharmonic Schrodinger Equation
    Capistrano-Filho, Roberto A.
    Cavalcante, Marcio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (01): : 103 - 144
  • [7] AXIOMATICS OF BIHARMONIC FUNCTIONS
    SMYRNELIS, EP
    ANNALES DE L INSTITUT FOURIER, 1975, 25 (01) : 35 - 97
  • [8] BIHARMONIC GREEN FUNCTIONS
    Begehr, Heinrich
    MATEMATICHE, 2006, 61 (02): : 395 - 409
  • [9] POSITIVE BIHARMONIC FUNCTIONS
    BEAVER, B
    SARIO, L
    WANG, C
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 1982, 7 (02): : 141 - 146
  • [10] Biharmonic nonlinear Schrodinger equation and the profile decomposition
    Zhu, Shihui
    Zhang, Jian
    Yang, Han
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6244 - 6255