In recent years, the rapid development of the Internet has promoted the continuous expansion of the scale of China's tourism industry, and the amount of tourism data has surged. However, tourists need help bringing personal interest and high-value data from the plethora of tourism information. The rise of artificial intelligence has transformed traditional tourism into an intelligent, data-driven industry. This shift has generated vast tourism data, offering both opportunities and challenges. The paper discusses an AI and IoT-based Intelligent Tourism Recommendation System (ITRS) that offers travelers predefined itineraries, personalized suggestions, and tourism insights. This system simplifies attraction discovery, unveiling hidden value within tourism data at the intersection of AI and IoT. The present study thoroughly investigates AI-based recommendation algorithms before delving into the system's architecture. It categorizes user-based, project-based, and article-based collaborative filtering methodologies tailored to specific goals. First, thoroughly examine AI-based recommendation algorithms before delving into the system architecture. Second, categorize collaborative filtering methods as user-based, project-based, and article-based, each tailored to specific objectives. Third, delve into the Apriori algorithm's complexity within the context of weighted association rules and introduce an enhanced iteration for improved efficiency. The proposed scheme encompasses an elaborate ITRS plan featuring a user interest model and a client module, crucial for the computation and analysis of users' long-term and short-term interests. Rigorous performance testing confirms the ITRS's superiority across varying support levels, with experimental results demonstrating the Apriori algorithm's exceptional accuracy, achieving a 94.3% improvement over other methods. The Apriori algorithm is better than traditional recommendation algorithms such as Linear Regression, Logistic Regression, Decision Trees, Random Forest, Support Vector Machines, K-nearest neighbor, Naive Bayes, and XGBoost.