Entanglement Dynamics and Classical Complexity

被引:1
|
作者
Wang, Jiaozi [1 ]
Dietz, Barbara [2 ]
Rosa, Dario [2 ,3 ]
Benenti, Giuliano [4 ,5 ,6 ]
机构
[1] Univ Osnabruck, Dept Phys, D-49069 Osnabruck, Germany
[2] Inst Basic Sci IBS, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[3] Korea Univ Sci & Technol UST, Basic Sci Program, Daejeon 34113, South Korea
[4] Univ Insubria, Ctr Nonlinear & Complex Syst, Dipartimento Sci & Alta Tecnol, Via Valleggio 11, I-22100 Como, Italy
[5] Ist Nazl Fis Nucl, Sez Milano, Via Celoria 16, I-20133 Milan, Italy
[6] Ist Nanosci CNR, NEST, I-56126 Pisa, Italy
关键词
quantum complexity; quantum to classical transition; TIME EVOLUTION; CHAOS;
D O I
10.3390/e25010097
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamical generation of entanglement for a two-body interacting system, starting from a separable coherent state. We show analytically that in the quasiclassical regime the entanglement growth rate can be simply computed by means of the underlying classical dynamics. Furthermore, this rate is given by the Kolmogorov-Sinai entropy, which characterizes the dynamical complexity of classical motion. Our results, illustrated by numerical simulations on a model of coupled rotators, establish in the quasiclassical regime a link between the generation of entanglement, a purely quantum phenomenon, and classical complexity.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Classical complexity and quantum entanglement
    Gurvits, L
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (03) : 448 - 484
  • [2] Classical dynamics of quantum entanglement
    Casati, Giulio
    Guarneri, Italo
    Reslen, Jose
    [J]. PHYSICAL REVIEW E, 2012, 85 (03):
  • [3] Entanglement and its relationship to classical dynamics
    Ruebeck, Joshua B.
    Lin, Jie
    Pattanayak, Arjendu K.
    [J]. PHYSICAL REVIEW E, 2017, 95 (06)
  • [4] Computational complexity of classical and quantum dynamics
    Ivanov, IB
    [J]. FIRST INTERNATIONAL SYMPOSIUM ON QUANTUM INFORMATICS, 2002, 5128 : 17 - 21
  • [5] Complexity and nonseparability of classical Liouvillian dynamics
    Prosen, Tomaz
    [J]. PHYSICAL REVIEW E, 2011, 83 (03):
  • [6] Dependence of entanglement dynamics on the global classical dynamical regime
    Chung, N. N.
    Chew, L. Y.
    [J]. PHYSICAL REVIEW E, 2009, 80 (01):
  • [7] Classical-driving-assisted entanglement dynamics control
    Zhang, Ying-Jie
    Han, Wei
    Xia, Yun-Jie
    Fan, Heng
    [J]. ANNALS OF PHYSICS, 2017, 379 : 187 - 197
  • [8] Dynamical entanglement versus symmetry and dynamics of classical approximations
    Buric, Nikola
    [J]. PHYSICAL REVIEW A, 2006, 73 (05):
  • [9] Entanglement's dynamics from classical stochastic process
    Khrennikov, A.
    [J]. EPL, 2009, 88 (04)
  • [10] Towards the classical communication complexity of entanglement distillation protocols with incomplete information
    Ambainis, A
    Yang, K
    [J]. 19TH IEEE ANNUAL CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2004, : 305 - 319