Classification of generalised higher-order Einstein-Maxwell Lagrangians

被引:1
|
作者
Colleaux, Aimeric [1 ]
Langlois, David [2 ]
Noui, Karim [3 ]
机构
[1] Open Univ Israel, Astrophys Res Ctr, Raanana, Israel
[2] Univ Paris Cite, Astroparticule & Cosmol, CNRS, F-75013 Paris, France
[3] Univ Paris Saclay, Lab Phys deux Infinis IJCLab, CNRS, Orsay, France
关键词
Classical Theories of Gravity; Gauge Symmetry; Effective Field Theories; DERIVATIVE EXPANSION; FIELD; ELECTRODYNAMICS;
D O I
10.1007/JHEP03(2024)041
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We classify all higher-order generalised Einstein-Maxwell Lagrangians that include terms linear in the curvature tensor and quadratic in the derivatives of the electromagnetic field strength tensor. Using redundancies due to the Bianchi identities, dimensionally dependent identities and boundary terms, we show that a general Lagrangian of this form can always be reduced to a linear combination of only 21 terms, with coefficients that are arbitrary functions of the two scalar invariants derived from the field strength. We give an explicit choice of basis where these 21 terms include 3 terms linear in the Riemann tensor and 18 terms quadratic in the derivatives of the field strength.
引用
下载
收藏
页数:24
相关论文
共 50 条
  • [21] SYMMETRIES AND ALTERNATIVE LAGRANGIANS IN HIGHER-ORDER MECHANICS
    SARLET, W
    PHYSICS LETTERS A, 1985, 108 (01) : 14 - 18
  • [22] COSMOLOGICAL SINGULARITIES AND HIGHER-ORDER GRAVITATIONAL LAGRANGIANS
    GIESSWEIN, M
    SEXL, R
    STREERUWITZ, E
    PHYSICS LETTERS B, 1974, B 52 (04) : 442 - 444
  • [23] GRAVITATIONAL COLLAPSE AND HIGHER-ORDER GRAVITATIONAL LAGRANGIANS
    MICHEL, FC
    ANNALS OF PHYSICS, 1973, 76 (01) : 281 - 298
  • [24] STATIONARY EINSTEIN-MAXWELL EQUATIONS
    HOENSELAERS, C
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (03) : 539 - 541
  • [25] Thermodynamics of the Einstein-Maxwell system
    Miyashita, Shoichiro
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, 2024 (04)
  • [26] A GENERALIZATION OF THE EINSTEIN-MAXWELL SYSTEM
    NISHIOKA, M
    HADRONIC JOURNAL, 1986, 9 (02): : 87 - 89
  • [27] SYMMETRIES OF EINSTEIN-MAXWELL EQUATIONS
    ROSEN, G
    JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (02) : 313 - &
  • [28] CLASS OF EINSTEIN-MAXWELL DILATONS
    MATOS, T
    NUNEZ, D
    QUEVEDO, H
    PHYSICAL REVIEW D, 1995, 51 (02): : R310 - R313
  • [29] HOMOGENEOUS EINSTEIN-MAXWELL FIELDS
    KRAMER, D
    ACTA PHYSICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1978, 44 (04): : 353 - 356
  • [30] Generalised higher-order Kolmogorov scales
    Boschung, Jonas
    Hennig, Fabian
    Gauding, Michael
    Pitsch, Heinz
    Peters, Norbert
    JOURNAL OF FLUID MECHANICS, 2016, 794 : 233 - 251