Development and Validation of a Claims-Based Model to Predict Categories of Obesity

被引:0
|
作者
Suissa, Karine [3 ]
Wyss, Richard [3 ]
Lu, Zhigang [3 ]
Bessette, Lily G. [3 ]
York, Cassandra [3 ]
Tsacogianis, Theodore N. [3 ]
Lin, Kueiyu Joshua [1 ,2 ,3 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 1620 Tremont St,Suite 3030, Boston, MA 02120 USA
[2] Harvard Med Sch, 1620 Tremont St,Suite 3030, Boston, MA 02120 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA 02120 USA
[4] Massachusetts Gen Hosp, Dept Med, Boston, MA 02120 USA
基金
美国国家卫生研究院;
关键词
body mass index; machine learning; missing data; obesity; pharmacoepidemiology; prediction modeling; DIMENSIONAL PROPENSITY SCORE; VALIDITY; PERFORMANCE;
D O I
10.1093/aje/kwad178
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
We developed and validated a claims-based algorithm that classifies patients into obesity categories. Using Medicare (2007-2017) and Medicaid (2000-2014) claims data linked to 2 electronic health record (EHR) systems in Boston, Massachusetts, we identified a cohort of patients with an EHR-based body mass index (BMI) measurement (calculated as weight (kg)/height (m)2). We used regularized regression to select from 137 variables and built generalized linear models to classify patients with BMIs of >= 25, >= 30, and >= 40. We developed the prediction model using EHR system 1 (training set) and validated it in EHR system 2 (validation set). The cohort contained 123,432 patients in the Medicare population and 40,736 patients in the Medicaid population. The model comprised 97 variables in the Medicare set and 95 in the Medicaid set, including BMI-related diagnosis codes, cardiovascular and antidiabetic drugs, and obesity-related comorbidities. The areas under the receiver-operating-characteristic curve in the validation set were 0.72, 0.75, and 0.83 (Medicare) and 0.66, 0.66, and 0.70 (Medicaid) for BMIs of >= 25, >= 30, and >= 40, respectively. The positive predictive values were 81.5%, 80.6%, and 64.7% (Medicare) and 81.6%, 77.5%, and 62.5% (Medicaid), for BMIs of >= 25, >= 30, and >= 40, respectively. The proposed model can identify obesity categories in claims databases when BMI measurements are missing and can be used for confounding adjustment, defining subgroups, or probabilistic bias analysis.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [21] Validation of an Algorithm for Claims-based Incidence of Prostate Cancer
    Parlett, Lauren E.
    Beachler, Daniel C.
    Lanes, Stephan
    Hoover, Robert N.
    Cook, Michael B.
    [J]. EPIDEMIOLOGY, 2019, 30 (03) : 466 - 471
  • [22] Validation of claims-based algorithms for pulmonary arterial hypertension
    Papani, Ravikanth
    Sharma, Gulshan
    Agarwal, Amitesh
    Callahan, Sean J.
    Chan, Winston J.
    Kuo, Yong-Fang
    Shim, Yun M.
    Mihalek, Andrew D.
    Duarte, Alexander G.
    [J]. PULMONARY CIRCULATION, 2018, 8 (02)
  • [23] Validation of claims-based persistent asthma severity classification
    Yu, A. P.
    Ivanova, J.
    Birnbaum, H.
    Hsieh, M.
    Seal, B.
    Emani, S.
    Rosiello, R.
    Colice, G.
    [J]. VALUE IN HEALTH, 2008, 11 (03) : A277 - A277
  • [24] Development and Validation of Claims-Based Algorithms To Determine Level of Trauma Associated with Fractures in Men
    Zhang, Jie
    Delzell, Elizabeth
    Arora, Tarun
    Wright, Nicole C.
    Ensrud, Kristine
    Schousboue, John
    Virnig, Beth
    Taylor, Brent
    Paudel, Misti
    Curtis, Jeffrey R.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2011, 20 : S5 - S5
  • [25] Development and validation of ICD-10 claims-based algorithms for pregnancy and infant outcomes
    Chomistek, Andrea K.
    Phiri, Kelesitse
    Calderbank, Jenna
    Doherty, Michael C.
    Chiuve, Stephanie
    Hinman-McIlroy, Brenda
    Snabes, Michael
    Seeger, John D.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2021, 30 : 60 - 61
  • [26] Development and validation of a claims-based algorithm to identify patients with Neuromyelitis Optica Spectrum disorder
    Patel, Anisha M.
    Exuzides, Alex
    Yermilov, Irina
    Dalglish, Hannah
    Gibbs, Sarah N.
    Reddy, Sheila R.
    Chang, Eunice
    Paydar, Caleb
    Broder, Michael S.
    Cohan, Stanley
    Greenberg, Benjamin
    Levy, Michael
    [J]. JOURNAL OF THE NEUROLOGICAL SCIENCES, 2024, 463
  • [27] Development and validation of a claims-based algorithm to identify patients with neuromyelitis optica spectrum disorder
    Exuzides, A.
    Yermilov, I.
    Dalglish, H.
    Gibbs, S. N.
    Reddy, S. R.
    Chang, E.
    Paydar, C.
    Broder, M. S.
    Cohan, S.
    Greenberg, B.
    Levy, M.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2022, 28 (3_SUPPL) : 757 - 758
  • [28] Development and validation of claims-based algorithms for estimating gestational age of spontaneous abortion and termination
    Huybrechts, Krista
    Zhu, Yanmin
    Hernandez-Diaz, Sonia
    Bateman, Brian
    Gray, Kathryn
    Straub, Loreen
    Taylor, Lockwood
    Ouellet-Hellstrom, Rita
    Ma, Yong
    Qiang, Yandong
    Vine, Seanna
    Mogun, Helen
    Hua, Wei
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 101 - 101
  • [29] Validity of a Claims-Based Diagnosis of Obesity Among Medicare Beneficiaries
    Lloyd, Jennifer T.
    Blackwell, Steve A.
    Wei, Iris I.
    Howell, Benjamin L.
    Shrank, William H.
    [J]. EVALUATION & THE HEALTH PROFESSIONS, 2015, 38 (04) : 508 - 517
  • [30] DEVELOPMENT AND VALIDATION OF A MODEL TO PREDICT VIROLOGIC FAILURE USING ADMINISTRATIVE CLAIMS
    Juday, T.
    Jing, Y.
    Chang, E.
    Broder, M.
    [J]. VALUE IN HEALTH, 2010, 13 (03) : A1 - A1