Development and Validation of a Claims-Based Model to Predict Categories of Obesity

被引:0
|
作者
Suissa, Karine [3 ]
Wyss, Richard [3 ]
Lu, Zhigang [3 ]
Bessette, Lily G. [3 ]
York, Cassandra [3 ]
Tsacogianis, Theodore N. [3 ]
Lin, Kueiyu Joshua [1 ,2 ,3 ,4 ]
机构
[1] Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, 1620 Tremont St,Suite 3030, Boston, MA 02120 USA
[2] Harvard Med Sch, 1620 Tremont St,Suite 3030, Boston, MA 02120 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Med, Div Pharmacoepidemiol & Pharmacoecon, Boston, MA 02120 USA
[4] Massachusetts Gen Hosp, Dept Med, Boston, MA 02120 USA
基金
美国国家卫生研究院;
关键词
body mass index; machine learning; missing data; obesity; pharmacoepidemiology; prediction modeling; DIMENSIONAL PROPENSITY SCORE; VALIDITY; PERFORMANCE;
D O I
10.1093/aje/kwad178
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
We developed and validated a claims-based algorithm that classifies patients into obesity categories. Using Medicare (2007-2017) and Medicaid (2000-2014) claims data linked to 2 electronic health record (EHR) systems in Boston, Massachusetts, we identified a cohort of patients with an EHR-based body mass index (BMI) measurement (calculated as weight (kg)/height (m)2). We used regularized regression to select from 137 variables and built generalized linear models to classify patients with BMIs of >= 25, >= 30, and >= 40. We developed the prediction model using EHR system 1 (training set) and validated it in EHR system 2 (validation set). The cohort contained 123,432 patients in the Medicare population and 40,736 patients in the Medicaid population. The model comprised 97 variables in the Medicare set and 95 in the Medicaid set, including BMI-related diagnosis codes, cardiovascular and antidiabetic drugs, and obesity-related comorbidities. The areas under the receiver-operating-characteristic curve in the validation set were 0.72, 0.75, and 0.83 (Medicare) and 0.66, 0.66, and 0.70 (Medicaid) for BMIs of >= 25, >= 30, and >= 40, respectively. The positive predictive values were 81.5%, 80.6%, and 64.7% (Medicare) and 81.6%, 77.5%, and 62.5% (Medicaid), for BMIs of >= 25, >= 30, and >= 40, respectively. The proposed model can identify obesity categories in claims databases when BMI measurements are missing and can be used for confounding adjustment, defining subgroups, or probabilistic bias analysis.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [1] Claims-based model to predict obesity in older patients
    Suissa, Karine
    Lu, Zhigang
    Bessette, Lily
    York, Cassandra
    Wyss, Richard
    Lin, Joshua
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2022, 31 : 62 - 63
  • [2] Development and validation of a claims-based risk assessment model to predict pharmacy expenditures in a commercial population
    Cantrell, CR
    Martin, BC
    [J]. VALUE IN HEALTH, 2005, 8 (03) : 294 - 294
  • [3] Development and validation of a claims-based prediction model for COPD severity
    Macaulay, Dendy
    Sun, Shawn X.
    Sorg, Rachael A.
    Yan, Sherry Y.
    De, Gourab
    Wu, Eric Q.
    Simonelli, Paul F.
    [J]. RESPIRATORY MEDICINE, 2013, 107 (10) : 1568 - 1577
  • [4] Development and validation of a claims-based risk assessment model to predict pharmacy expenditures in a US Medicaid population
    Cantrell, CR
    Martin, BC
    [J]. VALUE IN HEALTH, 2005, 8 (06) : A68 - A68
  • [5] Development and validation of claims-based algorithms for conjunctivitis and keratitis
    Chomistek, Andrea K.
    Franklin, Jessica M.
    Sobel, Rachel E.
    Marcus, Andrea F.
    Sinnott, Sarah-Jo
    Howell, Ashley V.
    Sultan, Ihtisham
    Wang, Florence
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 282 - 282
  • [6] Development and validation of a claims-based measure of abortion services
    Gibbs, Susannah E.
    Oakley, Lisa P.
    Harvey, S. Marie
    [J]. JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2020, 26 (05) : 1383 - 1388
  • [7] Development and Preliminary Validation of a Medicare Claims-Based Model to Predict Left Ventricular Ejection Fraction Class in Patients With Heart Failure
    Desai, Rishi J.
    Lin, Kueiyu Joshua
    Patorno, Elisabetta
    Barberio, Julie
    Lee, Moa
    Levin, Raisa
    Evers, Thomas
    Wang, Shirley V.
    Schneeweiss, Sebastian
    [J]. CIRCULATION-CARDIOVASCULAR QUALITY AND OUTCOMES, 2018, 11 (12): : e004700
  • [8] Validation of claims-based algorithms for psoriasis
    Lee, Hemin
    Cho, Soo-Kyung
    Bessette, Lily Gui
    He, Mengdong
    Merola, Joseph F.
    Wegrzyn, Lani R.
    Kilpatrick, Ryan D.
    Kim, Seoyoung C.
    [J]. JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2020, 83 (06) : AB122 - AB122
  • [9] Development and validation of a claims-based definitional algorithm for moderate asthma exacerbations
    Rothnie, Kieran J.
    Duh, Mei Sheng
    Roberts, Melissa
    Zhang, Shiyuan
    Czira, Alexandrosz
    Slade, David
    Goodall, Emma
    Cheng, Wendy Y.
    Thompson-Leduc, Philippe
    Greatsinger, Alexandra
    Zhang, Adina
    Mapel, Douglas W.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2023, 32 : 557 - 558
  • [10] External validation of a claims-based model to predict left ventricular ejection fraction class in patients with heart failure
    Mahesri, M. Mufaddal
    Chin, K.
    Kumar, A.
    Barve, A. A.
    Studer, R.
    Lahoz, R.
    Desai, R. J.
    [J]. EUROPEAN JOURNAL OF HEART FAILURE, 2020, 22 : 78 - 78