Drift Prediction and Chemical Reaction Identification for ISFETs using Deep Learning

被引:0
|
作者
Xu, Yuting [1 ]
Kuang, Lei [1 ]
Zhu, Taiyu [1 ]
Zeng, Junming [1 ]
Georgiou, Pantelis [1 ]
机构
[1] Imperial Coll London, Dept Elect & Elect Engn, Ctr Bioinspired Technol, London SW7 2AZ, England
关键词
ARRAY;
D O I
10.1109/ISCAS46773.2023.10181442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper demonstrates a novel framework utilising artificial neural networks (ANNs) to identify electrochemical signals, estimate drift and perform signal extraction for ISFET sensors. We propose a neural network based on the combination of Multi-Layer Perceptrons (MLPs) and Gated Recurrent Units (GRUs), to aid the analysis of chemical reactions for ISFETs by identifying the reaction origin and compensating for drift in real time. The model is trained and tested using Keras on an artificial dataset, achieving a reaction classification accuracy of 89.71% with an average delay of 15.73 s. We have also implemented the proposed model on an FPGA through high-level synthesis (HLS) with a tunable latency of 56254 clock cycles under an 100MHz clock. This work paves the way for enhancing biosensors with ANNs, where a smart electrochemical imager with integrated edge processing can be implemented for various biomedical applications.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Prediction of chemical reaction yields using deep learning
    Schwaller, Philippe
    Vaucher, Alain C.
    Laino, Teodoro
    Reymond, Jean-Louis
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (01):
  • [2] Deep learning for chemical reaction prediction
    Fooshee, David
    Mood, Aaron
    Gutman, Eugene
    Tavakoli, Mohammadamin
    Urban, Gregor
    Liu, Frances
    Huynh, Nancy
    Van Vranken, David
    Baldi, Pierre
    [J]. MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2018, 3 (03): : 442 - 452
  • [3] Prediction of chemical compounds properties using a deep learning model
    Galushka, Mykola
    Swain, Chris
    Browne, Fiona
    Mulvenna, Maurice D.
    Bond, Raymond
    Gray, Darren
    [J]. NEURAL COMPUTING & APPLICATIONS, 2021, 33 (20): : 13345 - 13366
  • [4] Prediction of chemical compounds properties using a deep learning model
    Mykola Galushka
    Chris Swain
    Fiona Browne
    Maurice D. Mulvenna
    Raymond Bond
    Darren Gray
    [J]. Neural Computing and Applications, 2021, 33 : 13345 - 13366
  • [5] Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification
    Baylon, Javier L.
    Cilfone, Nicholas A.
    Gulcher, Jeffrey R.
    Chittenden, Thomas W.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (02) : 673 - 688
  • [6] Novel framework for learning performance prediction using pattern identification and deep learning
    Weng, Cheng-Hsiung
    Huang, Cheng-Kui
    [J]. DATA TECHNOLOGIES AND APPLICATIONS, 2024,
  • [7] Semantic drift prediction for class incremental deep metric learning
    Nugroho, Kuntoro Adi
    Ruan, Shanq-Jang
    [J]. NEURAL COMPUTING & APPLICATIONS, 2022, 34 (22): : 20299 - 20312
  • [8] Semantic drift prediction for class incremental deep metric learning
    Kuntoro Adi Nugroho
    Shanq-Jang Ruan
    [J]. Neural Computing and Applications, 2022, 34 : 20299 - 20312
  • [9] Deep Learning for Deep Chemistry: Optimizing the Prediction of Chemical Patterns
    Cova, Tania F. G. G.
    Pais, Alberto A. C. C.
    [J]. FRONTIERS IN CHEMISTRY, 2019, 7
  • [10] Scientific Deep Machine Learning Concepts for the Prediction of Concentration Profiles and Chemical Reaction Kinetics: Consideration of Reaction Conditions
    Adebar, Niklas
    Keupp, Julian
    Emenike, Victor N.
    Kuehlborn, Jonas
    vom Dahl, Lisa
    Moeckel, Robert
    Smiatek, Jens
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (05): : 929 - 944