Hyperbolically embedded subgroups and quasi-isometries of pairs

被引:1
|
作者
Hughes, Sam [1 ]
Martinez-Pedroza, Eduardo [2 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg, Oxford OX2 6GG, England
[2] Mem Univ Newfoundland, Dept Math & Stat, St John, NF, Canada
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会; 欧盟地平线“2020”;
关键词
Quasi-isometries of pairs; hyperbolically embedded subgroups; acylindrically hyperbolic group; GEOMETRY; RIGIDITY;
D O I
10.4153/S0008439523000012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give technical conditions for a quasi-isometry of pairs to preserve a subgroup being hyperbolically embedded. We consider applications to the quasi-isometry and commensurability invariance of acylindrical hyperbolicity of finitely generated groups.
引用
下载
收藏
页码:827 / 843
页数:17
相关论文
共 50 条
  • [41] Quasi-isometries between visual hyperbolic spaces
    Álvaro Martínez-Pérez
    Manuscripta Mathematica, 2012, 137 : 195 - 213
  • [42] Generalized quasi-isometries on smooth Riemannian manifolds
    Afanas'eva, E. S.
    MATHEMATICAL NOTES, 2017, 102 (1-2) : 12 - 21
  • [43] Quasi-isometries and isoperimetric inequalities in planar domains
    Canton, Alicia
    Granados, Ana
    Portilla, Ana
    Rodriguez, Jose M.
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2015, 67 (01) : 127 - 157
  • [44] INSTABILITY OF THE CONSERVATIVE PROPERTY UNDER QUASI-ISOMETRIES
    LYONS, T
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1991, 34 (02) : 483 - 489
  • [45] Rigidity of quasi-isometries for some hyperbolic buildings
    Bourdon, M
    Pajot, H
    COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (04) : 701 - 736
  • [46] On Local Properties of Spatial Generalized Quasi-isometries
    Salimov, R. R.
    Sevost'yanov, E. A.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 704 - 717
  • [47] On local properties of spatial generalized quasi-isometries
    R. R. Salimov
    E. A. Sevost’yanov
    Mathematical Notes, 2017, 101 : 704 - 717
  • [48] Some results on higher orders quasi-isometries
    Mahmoud, Sid Ahmed Ould Ahmed
    Saddi, Adel
    Gherairi, Khadija
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (04): : 1315 - 1333
  • [49] On the center of the group of quasi-isometries of the real line
    Prateep Chakraborty
    Indian Journal of Pure and Applied Mathematics, 2019, 50 : 877 - 881
  • [50] On maps almost quasi-conformally close to quasi-isometries
    Miklyukov, Vladimir Mikhaelovich
    JOURNAL D ANALYSE MATHEMATIQUE, 2006, 100 (1): : 375 - 396