Low-Temperature Characterization of a Nonaqueous Liquid Electrolyte for Lithium Batteries

被引:0
|
作者
Hickson, Darby T. [1 ,2 ]
Im, Julia [2 ]
Halat, David M. [2 ]
Karvat, Aakash [2 ]
Reimer, Jeffrey A. [1 ,2 ]
Balsara, Nitash P. [1 ,2 ]
机构
[1] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Chem & Biomol Engn, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
batteries; -; li-ion; energy storage; electrochemical engineering; CARBONATE-FREE ELECTROLYTE; STEADY-STATE CURRENT; ETHYLENE CARBONATE; POLYMER ELECTROLYTES; TRANSFERENCE NUMBERS; TRANSPORT-PROPERTIES; IONIC ASSOCIATION; ESTER COSOLVENTS; LIMITING CURRENT; SOLVENT BLENDS;
D O I
10.1149/1945-7111/ad2d91
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Rechargeable batteries exhibit poor performance at low temperatures due to sluggish ion transport through the electrolytic phase. Ion transport is governed by three transport parameters-conductivity, diffusion coefficient, and the cation transference number with respect to the solvent velocity-and the thermodynamic factor. Understanding how these parameters change with temperature is necessary for designing improved electrolytes. In this work, we combine electrochemical techniques with electrophoretic NMR to determine the temperature dependence of these parameters for a liquid electrolyte, LiTFSI salt dissolved in tetraglyme between -20 and 45 degrees C. At colder temperatures, all species in the electrolyte tend to move more slowly due to increasing viscosity, which translates to a monotonic decrease in conductivity and diffusion coefficient with decreasing temperature. Surprisingly, we find that the field-induced velocity of solvent molecules at a particular salt concentration is a nonmonotonic function of temperature. The cation transference number with respect to the solvent velocity thus exhibits a complex dependence on temperature and salt concentration. The measured thermodynamic and transport properties are used to predict concentration gradients that will form in a lithium-lithium symmetric cell under a constant applied potential as a function of temperature using concentrated solution theory. The calculated steady current at -20 degrees C is lower than that at 45 degrees C by roughly two orders of magnitude.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Ion Transport Kinetics in Low-Temperature Lithium Metal Batteries
    Hu, Anjun
    Li, Fei
    Chen, Wei
    Lei, Tianyu
    Li, Yaoyao
    Fan, Yuxin
    He, Miao
    Wang, Fan
    Zhou, Mingjie
    Hu, Yin
    Yan, Yichao
    Chen, Bo
    Zhu, Jun
    Long, Jianping
    Wang, Xianfu
    Xiong, Jie
    ADVANCED ENERGY MATERIALS, 2022, 12 (42)
  • [32] Recent Progress on the Low-Temperature Lithium Metal Batteries and Electrolytes
    Huang, Yiyu
    Li, Hongyan
    Sheng, Ouwei
    Tao, Xinyong
    Jin, Chengbin
    ADVANCED SUSTAINABLE SYSTEMS, 2023,
  • [33] 40 Years of Low-Temperature Electrolytes for Rechargeable Lithium Batteries
    Li, Zeheng
    Yao, Yu-Xing
    Sun, Shuo
    Jin, Cheng-Bin
    Yao, Nan
    Yan, Chong
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (37)
  • [34] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Tan, Sha
    Shadike, Zulipiya
    Cai, Xinyin
    Lin, Ruoqian
    Kludze, Atsu
    Borodin, Oleg
    Lucht, Brett L.
    Wang, Chunsheng
    Hu, Enyuan
    Xu, Kang
    Yang, Xiao-Qing
    ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
  • [35] Review on Low-Temperature Electrolytes for Lithium-Ion and Lithium Metal Batteries
    Sha Tan
    Zulipiya Shadike
    Xinyin Cai
    Ruoqian Lin
    Atsu Kludze
    Oleg Borodin
    Brett L. Lucht
    Chunsheng Wang
    Enyuan Hu
    Kang Xu
    Xiao-Qing Yang
    Electrochemical Energy Reviews, 2023, 6
  • [36] LOW-TEMPERATURE ENERGY EFFICIENCY OF LITHIUM-ION BATTERIES
    Nazari, Ashkan
    Esmaeeli, Roja
    Hashemi, Seyed Reza
    Aliniagerdroudbari, Haniph
    Farhad, Siamak
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2018, VOL 6A, 2019,
  • [37] A perspective on energy chemistry of low-temperature lithium metal batteries
    Liu, He
    Cheng, Xinbing
    Yan, Chong
    Li, Zeheng
    Zhao, Chenzi
    Xiang, Rong
    Yuan, Hong
    Huang, Jiaqi
    Kuzmina, Elena
    Karaseva, Elena
    Kolosnitsyn, Vladimir
    Zhang, Qiang
    iEnergy, 2022, 1 (01): : 72 - 81
  • [38] Synthesis and characterization of lithium holmium silicate solid electrolyte for high temperature lithium batteries
    Ganesan, M.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2009, 39 (06) : 947 - 951
  • [39] Synthesis and characterization of lithium holmium silicate solid electrolyte for high temperature lithium batteries
    M. Ganesan
    Journal of Applied Electrochemistry, 2009, 39 : 947 - 951
  • [40] Molecular Simulations Guided Polymer Electrolyte towards Superior Low-Temperature Solid Lithium-Metal Batteries
    Zhou, Jinqiu
    Ji, Haoqing
    Qian, Yijun
    Liu, Jie
    Yan, Tieying
    Yan, Chenglin
    Qian, Tao
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (41) : 48810 - 48817