CRISPR/Cas12a triggered SERS and naked eye dual-mode biosensor for ultrasensitive and on-site detection of nucleic acid via cascade signal amplification

被引:3
|
作者
Liu, Jianghua [1 ]
Chen, Jiahui [1 ]
Jia, Shijie [1 ]
Wang, Yu [1 ]
Wu, Di [2 ]
Wu, Yongning [1 ,3 ]
Li, Guoliang [1 ]
机构
[1] Shaanxi Univ Sci & Technol, Sch Food Sci & Engn, Xian 710021, Peoples R China
[2] Queens Univ Belfast, Inst Global Food Secur, Sch Biol Sci, Belfast BT9 5DL, North Ireland
[3] Chinese Acad Med Sci, China Natl Ctr Food Safety Risk Assessment, NHC Key Lab Food Safety Risk Assessment, Food Safety Res Unit 2019RU014, Beijing 100021, Peoples R China
基金
中国国家自然科学基金;
关键词
CRISPR/Cas12a; Cascade signal amplification; On-site detection; SERS; Meat adulteration;
D O I
10.1016/j.snb.2023.135249
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Highly sensitive and on-site detection of nucleic acids has always been a critical issue in the field of analytical chemistry. Surface-enhanced Raman scattering (SERS)-based biosensing exhibits huge potential in nucleic acid detection, while the applicability is restricted in trace nucleic acid screening due to the lack of appropriate signal recognition, transducing and amplification technologies. Inspired by the specific recognition of CRISPR/Cas12a and the improved sensitivity through cascade signal amplification, we innovatively proposed a CRISPR/Cas12a triggered SERS and naked eye dual-mode biosensor for ultrasensitive and on-site detection of nucleic acid via cascade signal amplification. Upon the target DNA recognition, the activated CRISPR/Cas12a indiscriminately cleaved substrate ssDNA, leading to the failure of toehold-mediated DNA-strand displacement reaction (TSDR), and triggering hybridization chain reaction (HCR) to assemble numerous G-quadruplex/hemin DNAzyme (GQH DNAzyme) for cascade signal amplification. The generated GQH DNAzyme catalyzed the oxidation of L-cysteine to cystine, perturbing the aggregation of 4-NTP@AuNPs, resulting in significant Raman signal change. On the other hand, GQH DNAzyme catalyzed the oxidation of 2,2 '-azino-di-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), leading to obvious color change to realize portable naked-eye detection. Through this strategy, target nucleic acid concentration was tactfully transformed into sensitive Raman and portable visualization signals, and the limit of detection were as low as 34.9 aM and 1 pM, respectively. Then, this biosensor was successfully applied to meat adulteration detection, which showed superb selectivity, sensitivity and applicability for on-site detection of trace nucleic acid in complicated food matrix.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Machine Learning-Assisted, Dual-Channel CRISPR/Cas12a Biosensor-In-Microdroplet for Amplification-Free Nucleic Acid Detection for Food Authenticity Testing
    Zhao, Zhiying
    Wang, Roumeng
    Yang, Xinqi
    Jia, Jingyu
    Zhang, Qiang
    Ye, Shengying
    Man, Shuli
    Ma, Long
    ACS NANO, 2024, 18 (49) : 33505 - 33519
  • [32] Rapid Visual CRISPR Assay: A Naked-Eye Colorimetric Detection Method for Nucleic Acids Based on CRISPR/Cas12a and a Convolutional Neural Network
    Xie, Shengsong
    Tao, Dagang
    Fu, Yuhua
    Xu, Bingrong
    Tang, You
    Steinaa, Lucilla
    Hemmink, Johanneke D.
    Pan, Wenya
    Huang, Xin
    Nie, Xiongwei
    Zhao, Changzhi
    Ruan, Jinxue
    Zhang, Yi
    Han, Jianlin
    Fu, Liangliang
    Ma, Yunlong
    Li, Xinyun
    Liu, Xiaolei
    Zhao, Shuhong
    ACS SYNTHETIC BIOLOGY, 2022, 11 (01): : 383 - 396
  • [33] An ultrasensitive biosensor with suppressed background signals for FEN1 detection in a homogeneous reaction via cascade primer exchange reaction and CRISPR/Cas12a system
    Song, Yong-Li
    He, Xiang-Lan
    Pan, Meng-Meng
    Wang, Ming
    Jiang, Ming
    Xu, Li
    Yu, Xu
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 403
  • [34] A fluorescent biosensor based on exponential amplification reaction-initiated CRISPR/Cas12a (EIC) strategy for ultrasensitive DNA methyltransferase detection
    Sun, Human
    Zhou, Shiying
    Liu, Yin
    Lu, Peng
    Qi, Na
    Wang, Guixue
    Yang, Mei
    Huo, Danqun
    Hou, Changjun
    ANALYTICA CHIMICA ACTA, 2023, 1239
  • [35] Amplification-free sensitive detection of Staphylococcus aureus by spherical nucleic acid triggered CRISPR/Cas12a and Poly T-Cu reporter
    Zhang, Xiaoyu
    Sun, Ruimeng
    Zheng, Haoran
    Qi, Yanfei
    MICROCHIMICA ACTA, 2025, 192 (02)
  • [36] Rapid and Amplification-free Nucleic Acid Detection with DNA Substrate-Mediated Autocatalysis of CRISPR/Cas12a
    Zhou, Zhongqi
    Lau, Cia-Hin
    Wang, Jianchao
    Guo, Rui
    Tong, Sheng
    Li, Jiaqi
    Dong, Wenjiao
    Huang, Zhihao
    Wang, Tao
    Huang, Xiaojun
    Yu, Ziqing
    Wei, Chiju
    Chen, Gang
    Xue, Hongman
    Zhu, Haibao
    ACS OMEGA, 2024, 9 (26): : 28866 - 28878
  • [37] Proximity binding-initiated DNA walker and CRISPR/Cas12a reaction for dual signal amplification detection of thrombin
    Zhang, Junyi
    Xiang, Jie
    Liao, Lei
    Jiang, Bingying
    Yuan, Ruo
    Xiang, Yun
    TALANTA, 2023, 256
  • [38] Cascade nucleic acid amplification-assisted CRISPR/Cas12a electrochemiluminescence biosensor using C3N4 nanomaterials for sensitive detection of MicroRNA-320d
    Zhang, Lina
    Zhang, Zuhao
    Zheng, Yang
    Wang, Shujing
    Ruifang, Liu
    Zhu, Longfei
    Li, Chengxiang
    Xie, Li
    Ge, Shenguang
    Wu, Jinxiang
    SENSORS AND ACTUATORS B-CHEMICAL, 2025, 426
  • [39] The sensor platform combined with dual signal amplification and based on UCNPs and CRISPR/Cas12a for MiRNA-21 detection
    Zhao, Weihua
    Zhang, Xinyi
    Tian, Ruiting
    Li, Hongbo
    Zhong, Shengliang
    Yu, Ruqin
    SENSORS AND ACTUATORS B-CHEMICAL, 2023, 393
  • [40] CRISPR/Cas13a-triggered entropy-driven amplification for colorimetric and fluorescent dual-mode detection of microRNA
    Yu, Juanchun
    Zhang, Junhong
    Li, Meng
    You, Yiqin
    Zhang, Chenchen
    ANALYTICAL BIOCHEMISTRY, 2024, 689