Biochar produced at high temperature mitigates N2O emission and promotes nitrogen retention in subtropical forest soils

被引:0
|
作者
Cheng, Liutao [1 ]
Wang, Bingtao [1 ]
Ren, Mengfan [2 ]
Wang, Yuzhe [2 ]
Hu, Yalin [2 ]
Liu, Xian [2 ,3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Forestry, Fuzhou, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Juncao Sci & Ecol, Fuzhou, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Juncao Sci & Ecol, Fuzhou 350002, Fujian, Peoples R China
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2024年 / 16卷 / 03期
关键词
biochar; Cunninghamia lanceolate; N2O emission; nitrogen retention; nitrogen transformation; pyrolysis temperature; CUNNINGHAMIA-LANCEOLATA PLANTATIONS; MICROBIAL COMMUNITY; SUCCESSIVE ROTATIONS; PARTICLE-SIZE; MINERALIZATION; AVAILABILITY; RESPONSES; BIOMASS; IMPACT; OXIDE;
D O I
10.1111/gcbb.13132
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Biochar is produced by burning biomass under oxygen- limited conditions, and it has been widely used as a soil amendment to improve soil functions such as nutri-ent retention. However, whether the impact of biochar application on soil nitro-gen (N) transformation and N2O emission varies with the pyrolysis temperature remains unclear, especially in different forest types in subtropical regions. In this study, a 60- day laboratory incubation experiment was conducted to evaluate the impact of biochar with different pyrolysis temperatures (300 degrees C [BC300], 500 degrees C [BC500], and 800 degrees C [BC800]) on net N transformation rates and N2O emission in soils collected from Castanopsis kawakamii dominated natural forest (NF) and Chinese fir (Cunninghamia lanceolate, CF) plantation in subtropical China. The results showed that the application of biochar significantly increased soil ammo-nium (NH4+) content (p< 0.001) but reduced nitrate (NO3-) content (p< 0.001) compared with the control. The soil NH4+ content of the BC800 treatment was significantly higher than that of other treatments (p< 0.001). Biochar application significantly reduced soil net N mineralization (NRmin) and nitrification (NRnit) rate (p< 0.001), but increased net ammonification (NRamm) rate (p< 0.001). The application of biochar led to a remarkable decrease in cumulative N2O emission com-pared to the control (p< 0.001). In particular, soils treated with high- temperature biochar emitted significantly lower N2O compared to other treatments (p< 0.001). The partial least squares path model demonstrated that biochar influenced N2O emission through a direct effect in NF soil and an indirect effect in CF soil. This study highlights the distinct role of biochar, particularly that produced under high pyrolysis temperatures as a soil amendment to mitigate N2O emission and promote N retention in both subtropical natural and planted forests.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Relationship between N2O and NO emission potentials and soil properties in Japanese forest soils
    Nishina, Kazuya
    Takenaka, Chisato
    Ishizuka, Shigehiro
    SOIL SCIENCE AND PLANT NUTRITION, 2009, 55 (01) : 203 - 214
  • [32] Effect of the temperature and moisture on the N2O emission from some arable soils
    I. N. Kurganova
    V. O. Lopes de Gerenyu
    Eurasian Soil Science, 2010, 43 : 919 - 928
  • [33] Converse Responses of Biochar Application on N2O Emissions in Soils at Different pH Values in a Subtropical Citrus Orchard
    Qian, Xiaojie
    Chen, Hongmei
    Li, Qinghua
    Wang, Fei
    AGRONOMY-BASEL, 2024, 14 (08):
  • [34] Isotopologue signatures of N2O produced by denitrification in soils
    Well, R.
    Flessa, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2009, 114
  • [35] Biochar promotes the reduction of N2O to N2 and concurrently suppresses the production of N2O in calcareous soil
    Dong, Wenxu
    Walkiewicz, Anna
    Bieganowski, Andrzej
    Oenema, Oene
    Nosalewicz, Magdalena
    He, Chaohui
    Zhang, Yuming
    Hu, Chunsheng
    GEODERMA, 2020, 362
  • [36] Innovative nitrogen management strategy reduced N2O emission while maintaining high pepper yield in subtropical condition
    Zhang, Fen
    Ma, Xiao
    Gao, Xiaopeng
    Cao, Hailing
    Liu, Fabo
    Wang, Junjie
    Guo, Guangzheng
    Liang, Tao
    Wang, Yan
    Chen, Xinping
    Wang, Xiaozhong
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2023, 354
  • [37] Impact of different levels of nitrogen fertilizer on N2O emission from different soils
    Jiao, Yan
    Huang, Yao
    Zong, Liang-Gang
    Zhou, Quan-Suo
    Sass, Ronald L.
    Huanjing Kexue/Environmental Science, 2008, 29 (08): : 2094 - 2098
  • [38] Nitrogen Removal and N2O Emission in Biochar-Sludge Subsurface Wastewater Infiltration Systems
    Qi, Shiyue
    Zhao, Yue
    Wang, Shiyao
    Zheng, Fanping
    Pan, Jing
    Fan, Linlin
    Li, Zhiqi
    Tan, Chaoquan
    Hou, Wanyuan
    WATER ENVIRONMENT RESEARCH, 2018, 90 (09) : 800 - 806
  • [39] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    K. Butterbach-Bahl
    R. Gasche
    L. Breuer
    H. Papen
    Nutrient Cycling in Agroecosystems, 1997, 48 : 79 - 90
  • [40] Fluxes of NO and N2O from temperate forest soils: impact of forest type, N deposition and of liming on the NO and N2O emissions
    ButterbachBahl, K
    Gasche, R
    Breuer, L
    Papen, H
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1997, 48 (1-2) : 79 - 90