Biochar produced at high temperature mitigates N2O emission and promotes nitrogen retention in subtropical forest soils

被引:0
|
作者
Cheng, Liutao [1 ]
Wang, Bingtao [1 ]
Ren, Mengfan [2 ]
Wang, Yuzhe [2 ]
Hu, Yalin [2 ]
Liu, Xian [2 ,3 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Forestry, Fuzhou, Fujian, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Juncao Sci & Ecol, Fuzhou, Fujian, Peoples R China
[3] Fujian Agr & Forestry Univ, Coll Juncao Sci & Ecol, Fuzhou 350002, Fujian, Peoples R China
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2024年 / 16卷 / 03期
关键词
biochar; Cunninghamia lanceolate; N2O emission; nitrogen retention; nitrogen transformation; pyrolysis temperature; CUNNINGHAMIA-LANCEOLATA PLANTATIONS; MICROBIAL COMMUNITY; SUCCESSIVE ROTATIONS; PARTICLE-SIZE; MINERALIZATION; AVAILABILITY; RESPONSES; BIOMASS; IMPACT; OXIDE;
D O I
10.1111/gcbb.13132
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Biochar is produced by burning biomass under oxygen- limited conditions, and it has been widely used as a soil amendment to improve soil functions such as nutri-ent retention. However, whether the impact of biochar application on soil nitro-gen (N) transformation and N2O emission varies with the pyrolysis temperature remains unclear, especially in different forest types in subtropical regions. In this study, a 60- day laboratory incubation experiment was conducted to evaluate the impact of biochar with different pyrolysis temperatures (300 degrees C [BC300], 500 degrees C [BC500], and 800 degrees C [BC800]) on net N transformation rates and N2O emission in soils collected from Castanopsis kawakamii dominated natural forest (NF) and Chinese fir (Cunninghamia lanceolate, CF) plantation in subtropical China. The results showed that the application of biochar significantly increased soil ammo-nium (NH4+) content (p< 0.001) but reduced nitrate (NO3-) content (p< 0.001) compared with the control. The soil NH4+ content of the BC800 treatment was significantly higher than that of other treatments (p< 0.001). Biochar application significantly reduced soil net N mineralization (NRmin) and nitrification (NRnit) rate (p< 0.001), but increased net ammonification (NRamm) rate (p< 0.001). The application of biochar led to a remarkable decrease in cumulative N2O emission com-pared to the control (p< 0.001). In particular, soils treated with high- temperature biochar emitted significantly lower N2O compared to other treatments (p< 0.001). The partial least squares path model demonstrated that biochar influenced N2O emission through a direct effect in NF soil and an indirect effect in CF soil. This study highlights the distinct role of biochar, particularly that produced under high pyrolysis temperatures as a soil amendment to mitigate N2O emission and promote N retention in both subtropical natural and planted forests.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Effects of soil moisture on gross N transformations and N2O emission in acid subtropical forest soils
    Yi Cheng
    Jing Wang
    Shen-Qiang Wang
    Jin-Bo Zhang
    Zu-Cong Cai
    Biology and Fertility of Soils, 2014, 50 : 1099 - 1108
  • [2] Effects of soil moisture on gross N transformations and N2O emission in acid subtropical forest soils
    Cheng, Yi
    Wang, Jing
    Wang, Shen-Qiang
    Zhang, Jin-Bo
    Cai, Zu-Cong
    BIOLOGY AND FERTILITY OF SOILS, 2014, 50 (07) : 1099 - 1108
  • [3] Biochar mitigates the stimulatory effects of straw incorporation on N2O emission and N2O/(N2O + N2) ratio in upland soil
    Li, Chenglin
    Wei, Zhijun
    Wang, Xiaomin
    Ma, Xiaofang
    Tang, Quan
    Zhao, Bingzi
    Shan, Jun
    Yan, Xiaoyuan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 369
  • [4] N2O production pathways in the subtropical acid forest soils in China
    Zhang, Jinbo
    Cai, Zucong
    Zhu, Tongbin
    ENVIRONMENTAL RESEARCH, 2011, 111 (05) : 643 - 649
  • [5] Soil Moisture Control of NO Turnover and N2O Release in Nitrogen-Saturated Subtropical Forest Soils
    Kang, Ronghua
    Behrendt, Thomas
    Mulder, Jan
    Doersch, Peter
    FORESTS, 2022, 13 (08):
  • [6] Nitrogen deposition increases N2O emission from an N-saturated subtropical forest in southwest China
    Xie, Danni
    Si, Gaoyue
    Zhang, Ting
    Mulder, Jan
    Duan, Lei
    ENVIRONMENTAL POLLUTION, 2018, 243 : 1818 - 1824
  • [7] N2O emission from tropical forest soils of Australia
    Breuer, L
    Papen, H
    Butterbach-Bahl, K
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D21) : 26353 - 26367
  • [8] Forest canopy mitigates soil N2O emission during hot moments
    Ülo Mander
    Alisa Krasnova
    Jordi Escuer-Gatius
    Mikk Espenberg
    Thomas Schindler
    Katerina Machacova
    Jaan Pärn
    Martin Maddison
    J. Patrick Megonigal
    Mari Pihlatie
    Kuno Kasak
    Ülo Niinemets
    Heikki Junninen
    Kaido Soosaar
    npj Climate and Atmospheric Science, 4
  • [9] Forest canopy mitigates soil N2O emission during hot moments
    Mander, Ulo
    Krasnova, Alisa
    Escuer-Gatius, Jordi
    Espenberg, Mikk
    Schindler, Thomas
    Machacova, Katerina
    Parn, Jaan
    Maddison, Martin
    Megonigal, J. Patrick
    Pihlatie, Mari
    Kasak, Kuno
    Niinemets, Ulo
    Junninen, Heikki
    Soosaar, Kaido
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2021, 4 (01)
  • [10] Biochar mitigates N2O emissions by promoting complete denitrification in acidic and alkaline paddy soils
    Wei, Zhijun
    Li, Chenglin
    Ma, Xiaofang
    Ma, Shutan
    Han, Zongyang
    Yan, Xiaoyuan
    Shan, Jun
    EUROPEAN JOURNAL OF SOIL SCIENCE, 2023, 74 (06)