Liquid-liquid phase separation in plants:Advances and perspectives from model species to crops

被引:11
|
作者
Liu, Qianwen [1 ,2 ]
Liu, Wenxuan [2 ]
Niu, Yiding [3 ]
Wang, Tao [1 ]
Dong, Jiangli [1 ]
机构
[1] China Agr Univ, Coll Biol Sci, Beijing 100193, Peoples R China
[2] Henan Agr Univ, Coll Life Sci, Zhengzhou 450002, Peoples R China
[3] Inner Mongolia Univ, Sch Life Sci, Key Lab Forage & Endem Crop Biol, Minist Educ, Hohhot 010021, Peoples R China
关键词
biomolecular condensates; crops; intrinsic disordered proteins; LLPS potential prediction; MEDICAGO-TRUNCATULA SEEDS; HEAT-STABLE PROTEOME; CIRCADIAN CLOCK; AUXIN-RESPONSE; STRESS GRANULES; PROTEINS HYL1; PHYTOCHROME B; IN-VITRO; CHROMATIN; SEUSS;
D O I
10.1016/j.xplc.2023.100663
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid-liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Spontaneous liquid-liquid phase separation of water
    Yagasaki, Takuma
    Matsumoto, Masakazu
    Tanaka, Hideki
    PHYSICAL REVIEW E, 2014, 89 (02):
  • [22] Liquid-liquid phase separation in tumor biology
    Tong, Xuhui
    Tang, Rong
    Xu, Jin
    Wang, Wei
    Zhao, Yingjun
    Yu, Xianjun
    Shi, Si
    SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
  • [23] Liquid-liquid phase separation in innate immunity
    Liu, Dawei
    Yang, Jinhang
    Cristea, Ileana M.
    TRENDS IN IMMUNOLOGY, 2024, 45 (06) : 454 - 469
  • [24] Liquid-liquid phase separation in organic aerosol
    Freedman, Miriam
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [25] Modulating α-Synuclein Liquid-Liquid Phase Separation
    Sawner, Ajay Singh
    Ray, Soumik
    Yadav, Preeti
    Mukherjee, Semanti
    Panigrahi, Rajlaxmi
    Poudyal, Manisha
    Patel, Komal
    Ghosh, Dhiman
    Kummerant, Eric
    Kumar, Ashutosh
    Riek, Roland
    Maji, Samir K.
    BIOCHEMISTRY, 2021, 60 (48) : 3676 - 3696
  • [26] Liquid-liquid phase separation in supercooled water
    Stanley, HE
    Poole, PH
    Sciortino, F
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA D-CONDENSED MATTER ATOMIC MOLECULAR AND CHEMICAL PHYSICS FLUIDS PLASMAS BIOPHYSICS, 1998, 20 (12BIS): : 2123 - 2133
  • [27] Liquid-liquid phase separation and biomolecular condensates
    Wu, Rongbo
    Li, Pilong
    CHINESE SCIENCE BULLETIN-CHINESE, 2019, 64 (22): : 2285 - 2291
  • [28] Crystallization in the presence of a liquid-liquid phase separation
    Veesler, Stephane
    Revalor, Eve
    Bottini, Olivier
    Hoff, Christian
    ORGANIC PROCESS RESEARCH & DEVELOPMENT, 2006, 10 (04) : 841 - 845
  • [29] Liquid-Liquid Phase Separation in Crowded Environments
    Andre, Alain A. M.
    Spruijt, Evan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (16) : 1 - 20
  • [30] Kinase regulation by liquid-liquid phase separation
    Lopez-Palacios, Tania P.
    Andersen, Joshua L.
    TRENDS IN CELL BIOLOGY, 2023, 33 (08) : 649 - 666