Underwater Animal Identification and Classification Using a Hybrid Classical-Quantum Algorithm

被引:2
|
作者
Pravin, Sheena Christabel [1 ]
Rohith, G. [1 ]
Kiruthika, V. [1 ]
Manikandan, E. [1 ,2 ]
Methelesh, S. [1 ]
Manoj, A. [1 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Chennai campus, Chennai 600127, India
[2] Vellore Inst Technol, Ctr Innovat & Prod Dev, Chennai Campus, Chennai 600127, India
关键词
Hybrid quantum circuit; Inceptionv3-QCNN; Resnet50-QCNN; ResNet18-QCNN; sea-animal image dataset;
D O I
10.1109/ACCESS.2023.3343120
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Underwater Animal Identification and Classification is gaining significant importance in recent times due to the growing demand for ecological surveillance and biodiversity monitoring. Classical Deep learning techniques have been prominently used for these tasks, but due to the live capture of animals in complex environments, a limited sea-animal image dataset, and the complex topography of the seafloor, particularly in shallow waters, sediments, reefs, submarine ridges, and ship radiation, the efficacy of identification and classification is still a bottleneck for several researchers. In this paper, three hybrid Classical-Quantum neural networks ResNet50-QCNN, ResNet18-QCNN and InceptionV3-QCNN have been proposed for underwater quantum-classical Animal Identification and Classification. It significantly lessens the complexity of classical computer processing data by using quantum devices to minimize dimension and denoise datasets. The numerical simulation results demonstrate that the quantum algorithm is capable of effective dimensionality reduction and an improvement in classification accuracy. The hybrid approach offers polynomial acceleration in dimension reduction beyond classical techniques, even when quantum data is read out classically. The three hybrid models, viz., ResNet50-QCNN, ResNet18-QCNN, and InceptionV3-QCNN, displayed classification test accuracy of 88%, 80.29%, and 70%, respectively, revealing that ResNet50-QCNN performed best in identifying and classifying underwater animals.
引用
收藏
页码:141902 / 141914
页数:13
相关论文
共 50 条
  • [21] Hybrid classical-quantum approach to solve the heat equation using quantum annealers
    Pollachini, Giovani G.
    Salazar, Juan P. L. C.
    Goes, Caio B. D.
    Maciel, Thiago O.
    Duzzioni, Eduardo, I
    PHYSICAL REVIEW A, 2021, 104 (03)
  • [22] Objective trajectories in hybrid classical-quantum dynamics
    Oppenheim, Jonathan
    Sparaciari, Carlo
    Soda, Barbara
    Weller-Davies, Zachary
    QUANTUM, 2023, 7
  • [23] Hybrid classical-quantum autoencoder for anomaly detection
    Sakhnenko, Alona
    O'Meara, Corey
    Ghosh, Kumar J. B.
    Mendl, Christian B.
    Cortiana, Giorgio
    Bernabe-Moreno, Juan
    QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [24] Hybrid classical-quantum autoencoder for anomaly detection
    Alona Sakhnenko
    Corey O’Meara
    Kumar J. B. Ghosh
    Christian B. Mendl
    Giorgio Cortiana
    Juan Bernabé-Moreno
    Quantum Machine Intelligence, 2022, 4
  • [25] FLOWS IN NANOSTRUCTURES: HYBRID CLASSICAL-QUANTUM MODELS
    Chivilikhin, S. A.
    Gusarov, V. V.
    Popov, I. Yu.
    NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2012, 3 (01): : 7 - 26
  • [26] Hybrid classical-quantum systems in terms of moments
    Brizuela, David
    Uria, Sara F.
    PHYSICAL REVIEW A, 2024, 109 (03)
  • [27] Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA
    Esposito, Aniello
    Danzig, Tamuz
    2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, : 1088 - 1094
  • [29] Hybrid Classical-Quantum Branch-and-Bound Algorithm for Solving Integer Linear Problems
    Sanavio, Claudio
    Tignone, Edoardo
    Ercolessi, Elisa
    ENTROPY, 2024, 26 (04)
  • [30] Generative-Based Algorithm for Data Clustering on Hybrid Classical-Quantum NISQ Architecture
    Rauch, Julien
    Rontani, Damien
    Vialle, Stephane
    ARCHITECTURE OF COMPUTING SYSTEMS, ARCS 2024, 2024, 14842 : 282 - 297