Universality of the topological phase transition in mixed-spin tetramer Heisenberg chains

被引:2
|
作者
Verissimo, L. M. [1 ]
Pereira, Maria S. S. [1 ]
Strecka, J. [2 ]
Lyra, M. L. [1 ]
机构
[1] Univ Fed Alagoas, Inst Fis, BR-57072900 Maceio, AL, Brazil
[2] P J Safank Univ, Fac Sci, Dept Theoret Phys & Astrophys, Pk Angelinum 9, Kosice 04154, Slovakia
关键词
Quantum spin models; Phase-diagram; Valence-bond states; Topological transition; Finite-size scaling; Universality; GROUND-STATE; FINITE-SIZE; QUANTUM; ENTANGLEMENT; DYNAMICS; DIAGRAMS; MAGNETS; S=1;
D O I
10.1016/j.physa.2023.129024
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The ground-state features of a mixed-spin Heisenberg bond-alternating chain with unit cell consisting of spin-1/2 and general spin -S dimers are investigated using density matrix renormalization group (DMRG) calculations. Similar spin units are considered to interact via an isotropic antiferromagnetic coupling constant J1, while an exchange constant J2 accounts for the interaction between distinct spin units. With increasing values of an external magnetic field, the system presents a sequence of magnetic-field -driven transitions between gapped plateau and gapless spin-liquid phases. At zero field, a quantum phase transition emerges between two topologically distinct gapped phases at a quantum critical point Jc = (J2/J1)|c at which the energy spin-gap closes. We employ a tangential finite-size scaling analysis of the relevant energy gap to precisely locate the quantum critical point and to estimate the correlation length critical exponent for several magnitudes of the spin S. While the critical value of the coupling constant ratio decreases with S, the scaling of the correlation length presents a universal power-law with a logarithmic correction scaling.& COPY; 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Thermodynamic properties of mixed-spin chains in magnetic field by the transfer matrix method
    Fu, H. H.
    Yao, K. L.
    Liu, Z. L.
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2006, 305 (01) : 253 - 258
  • [32] Geometric Phase for a Qutrit-Qubit Mixed-Spin System
    Zhang Ai-Ping
    Qiang Wen-Chao
    Ling Ya-Wen
    Xin Hong
    Yang Yong-Ming
    CHINESE PHYSICS LETTERS, 2011, 28 (08)
  • [33] Non-Landau quantum phase transition in modulated SU(N) Heisenberg spin chains
    Capponi, Sylvain
    Devos, Lukas
    Lecheminant, Philippe
    Totsuka, Keisuke
    Vanderstraeten, Laurens
    PHYSICAL REVIEW B, 2025, 111 (02)
  • [34] SPIN-PEIERLS TRANSITION IN ANISOTROPIC HEISENBERG-CHAINS
    SY, HK
    SOLID STATE COMMUNICATIONS, 1981, 38 (08) : 771 - 772
  • [35] Spin reduction transition in spin-3/2 random Heisenberg chains
    Refael, G
    Kehrein, S
    Fisher, DS
    PHYSICAL REVIEW B, 2002, 66 (06)
  • [36] Thermal entanglement in a mixed-spin Heisenberg XXZ model under a nonuniform external magnetic field
    Wang Fei
    Jia HongHui
    Zhang HaiLiang
    Zhang XueAo
    Chang ShengLi
    SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY, 2009, 52 (12): : 1919 - 1924
  • [37] Breakdown of a Magnetization Plateau in Ferrimagnetic Mixed Spin-(1/2,S) Heisenberg Chains due to a Quantum Phase Transition towards the Luttinger Spin Liquid
    Strecka, J.
    ACTA PHYSICA POLONICA A, 2017, 131 (04) : 624 - 626
  • [38] Thermal entanglement in a mixed-spin Heisenberg XXZ model under a nonuniform external magnetic field
    Fei Wang
    HongHui Jia
    HaiLiang Zhang
    XueAo Zhang
    ShengLi Chang
    Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52 : 1919 - 1924
  • [39] The compensation behavior and initial susceptibilities of a mixed-spin Heisenberg ferrimagnetic system in an external magnetic field
    Li, Jun
    Du, An
    Wei, Guozhu
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (07): : 1077 - 1087
  • [40] Ground-state phase diagram and universality of sequential topological valence-bond-solid quantum transitions in a mixed tetramer chain
    Verissimo, Luan M.
    Pereira, Maria S. S.
    Strecka, Jozef
    Lyra, Marcelo L.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2024, 36 (16)