Conformation and Dynamics along the Chain Contours of Polymer-Grafted Nanoparticles

被引:6
|
作者
Wei, Yuan [1 ,2 ]
Chen, Qionghai [1 ,2 ]
Zhao, Hengheng [1 ,2 ]
Duan, Pengwei [1 ,2 ]
Zhang, Liqun [1 ,2 ,3 ]
Liu, Jun [1 ,2 ]
机构
[1] Beijing Univ Chem Technol, State Key Lab Organ Inorgan Composites, Beijing 100029, Peoples R China
[2] Beijing Univ Chem Technol, Key Lab Beijing City Preparat & Proc Novel Polymer, Beijing 100029, Peoples R China
[3] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
关键词
MECHANICAL-PROPERTIES; RELAXATION DYNAMICS; GOLD NANOPARTICLES; MOLECULAR-WEIGHT; NANOCOMPOSITES; BRUSH; SUSPENSIONS; DISPERSION; INSIGHTS; BEHAVIOR;
D O I
10.1021/acs.langmuir.3c01238
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Densely grafted polymer chains onto spherical nanoparticlesproducea diverse range of conformations. At high grafting densities, thecorona region near the nanoparticle surface undergoes intense confinementdue to a high concentration of chains in the concentrated polymerbrush (CPB) region, which results in strong stretching for portionsof the chains located within. In contrast, a semi-dilute polymer brush(SDPB) forms farther away from the core and offers reduced confinementfor the polymer and more ideal conformations. However, conventionalexperimental methods are limited in their ability to provide detailedinformation on individual segments of grafted polymers in these regions;hence, molecular dynamics (MD) simulations are essential for gainingcomprehensive insights into the behavior of the grafted chains. Thisstudy aims to explore the variations in polymer structure and dynamicsthat occur along the contour of the grafted chains as influenced byspatial confinement. We focus on the motions and relative positionsof each bead along grafted polymers. Our results show that only theinitial few grafted beads near the nanoparticle surface exhibit thestrong stretching attributed segments in the CPB region of the brush.Increased grafting density or decreased chain flexibility leads tomore stretched grafted chains and more aligned bond vectors. As aresult, the relaxation dynamics of local regions of the polymer arealso strongly influenced by these parameters. Although the graftedbeads in the interior of the CPB region are highly sensitive to theseparameters, those farther from the nanoparticle core experience significantlydiminished effects. In comparison to the Daoud-Cotton (DC)model's predictions of CPB size, beads near the nanoparticlesurface show slower dynamic decay, especially in high grafting densities,aligning with the DC model's estimates. Finally, we compareour simulations to previous works for additional insight into polymer-graftednanoparticles.
引用
收藏
页码:11003 / 11015
页数:13
相关论文
共 50 条
  • [41] Bimodal Polymer-grafted Nanoparticles with Precisely Controlled Structures
    Ou, Hua-lin
    Zhang, Bao-qing
    Liu, Chen-yang
    ACTA POLYMERICA SINICA, 2022, 53 (11): : 1388 - 1398
  • [42] Solvent-Mediated Isolation of Polymer-Grafted Nanoparticles
    Prince, Elisabeth
    Narayanan, Pournima
    Chekini, Mahshid
    Pace-Tonna, Carleigh
    Roberts, Megan G.
    Zhulina, Ekaterina
    Kumacheva, Eugenia
    MACROMOLECULES, 2020, 53 (11) : 4533 - 4540
  • [43] Effect of Polymer Ligand Conformation on the Self-Assembly of Block Copolymers and Polymer-Grafted Nanoparticles within an Evaporative Emulsion
    Xu, Meng
    Ku, Kang Hee
    Lee, Young Jun
    Kim, Taewan
    Shin, Jaeman J.
    Kim, Eun Ji
    Choi, Soo-Hyung
    Yun, Hongseok
    Kim, Bumjoon J.
    MACROMOLECULES, 2021, 54 (07) : 3084 - 3092
  • [44] Polymer-grafted nanoparticles in nanocomposites for tailoring dielectric properties
    Malmstrom, Eva
    Hillborg, Henrik
    Carlmark, Anna
    Sanchez, Carmen
    Wahlander, Martin
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [45] Interfacial effects on crystallization behavior of polymer nanocomposites with polymer-grafted nanoparticles
    Wen, Xiangning
    Zhao, Weiwei
    Su, Yunlan
    Wang, Dujin
    POLYMER CRYSTALLIZATION, 2019, 2 (03)
  • [46] Macromolecular Diffusion through a Polymer Matrix with Polymer-Grafted Chained Nanoparticles
    Lin, Chia-Chun
    Ohno, Kohji
    Clarke, Nigel
    Winey, Karen I.
    Composto, Russell J.
    MACROMOLECULES, 2014, 47 (15) : 5357 - 5364
  • [47] Polymer-Grafted Magnetic Nanoparticles in Nanocomposites: Curvature Effects, Conformation of Grafted Chain, and Bimodal Nanotriggering of Filler Organization by Combination of Chain Grafting and Magnetic Field (vol 45, pg 9220, 2012)
    Robbes, Anne-Sophie
    Cousin, Fabrice
    Meneau, Florian
    Dalmas, Florent
    Schweins, Ralf
    Gigmes, Didier
    Jestin, Jacques
    MACROMOLECULES, 2013, 46 (03) : 1260 - 1260
  • [48] Diffusion of polymer-grafted nanoparticles with dynamical fluctuations in unentangled polymer melts
    Chen, Yulong
    Xu, Haohao
    Ma, Yangwei
    Liu, Jun
    Zhang, Liqun
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2022, 24 (18) : 11322 - 11335
  • [49] Symmetry Transitions of Polymer-Grafted Nanoparticles: Grafting Density Effect
    Yun, Hongseok
    Yu, Ji Woong
    Lee, Young Jun
    Kim, Jin-Seong
    Park, Chan Ho
    Nam, Chongyong
    Han, Junghun
    Heo, Tae-Young
    Cho, Soo-Hyung
    Lee, Doh C.
    Lee, Won Bo
    Stein, Gila E.
    Kim, Bumjoon J.
    CHEMISTRY OF MATERIALS, 2019, 31 (14) : 5264 - 5273
  • [50] Assembly of polymer-grafted gold nanoparticles into superlattice for memory devices
    Zhu, Jintao
    Wang, Ke
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 257