Research on Rolling Bearing Fault Diagnosis Based on DRS Frequency Spectrum Image and Deep Learning

被引:1
|
作者
Li, Zhuoxian [1 ]
Wang, Hao [1 ]
Chen, Jiatai [1 ]
Zhou, Zhexin [1 ]
Chen, Wei [1 ]
机构
[1] Shanghai Univ Elect Power, Coll Energy & Mech Engn, Shanghai 201306, Peoples R China
来源
关键词
NETWORK; RESNET;
D O I
10.20855/ijav.2023.28.21942
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Deep learning is gradually being widely used in fault diagnosis now, because deep learning networks are more advantageous in processing data, especially image data. However, research using frequency spectra image of fault signals as inputs to deep learning networks are extremely rare in the field of fault diagnosis. Therefore, a brandnew intelligent fault diagnosis method is proposed in this paper which combines discrete random separate (DRS) frequency spectrum images with deep learning networks (DRSFSI-DL). To investigate the fault diagnosis effects of the method mentioned above, several deep learning networks are utilized for comparisons, such as GoogLeNet, residual network, and Inception ResNet v2. The vibration fault frequency spectrum images processed by the DRS method are input to train several deep learning networks. Under the same circumstance of deep learning networks, the fault diagnosis using the DRS frequency spectrum image (DRSFSI), is also compared to the fault diagnosis using traditional frequency spectrum, including the power spectrum density (PSD) and cepstrum. The fault diagnosis results show that the proposed method has a better classification accuracy than the PSD image and cepstrum image, with the same deep learning networks. The fault diagnosis accuracy can reach up to 100.00% for some deep learning networks with better generalization performance than the PSD image and cepstrum image. Lastly, the proposed method is further verified using the brand-new bearing fault dataset, and excellent accuracy and generalization ability are achieved.
引用
收藏
页码:211 / 219
页数:9
相关论文
共 50 条
  • [41] A survey on Deep Learning based bearing fault diagnosis
    Hoang, Duy-Tang
    Kang, Hee-Jun
    NEUROCOMPUTING, 2019, 335 : 327 - 335
  • [42] Fault diagnosis method of rolling bearing based on deep belief network
    Shang, Zhiwu
    Liao, Xiangxiang
    Geng, Rui
    Gao, Maosheng
    Liu, Xia
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2018, 32 (11) : 5139 - 5145
  • [43] Deep neural networks-based rolling bearing fault diagnosis
    Chen, Zhiqiang
    Deng, Shengcai
    Chen, Xudong
    Li, Chuan
    Sanchez, Rene-Vinicio
    Qin, Huafeng
    MICROELECTRONICS RELIABILITY, 2017, 75 : 327 - 333
  • [44] Fault diagnosis method of rolling bearing based on deep belief network
    Zhiwu Shang
    Xiangxiang Liao
    Rui Geng
    Maosheng Gao
    Xia Liu
    Journal of Mechanical Science and Technology, 2018, 32 : 5139 - 5145
  • [45] Fault diagnosis of rolling bearing based on deep residual shrinkage network
    Che C.
    Wang H.
    Ni X.
    Lin R.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (07): : 1399 - 1406
  • [46] Fault Diagnosis for Rolling Bearing Based on Deep Residual Neural Network
    Sun, Yi
    Gao, Hongli
    Hong, Xin
    Song, Hongliang
    Liu, Qi
    2018 INTERNATIONAL CONFERENCE ON SENSING, DIAGNOSTICS, PROGNOSTICS, AND CONTROL (SDPC), 2018, : 421 - 425
  • [47] A Deep Learning Method for Rolling Bearing Fault Diagnosis through Heterogeneous Data
    Zhou, Wei
    Hou, Yandong
    PROCEEDINGS OF 2020 IEEE 9TH DATA DRIVEN CONTROL AND LEARNING SYSTEMS CONFERENCE (DDCLS'20), 2020, : 1214 - 1219
  • [48] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Tian, Yuling
    Liu, Xiangyu
    TSINGHUA SCIENCE AND TECHNOLOGY, 2019, 24 (06) : 750 - 762
  • [49] A Deep Adaptive Learning Method for Rolling Bearing Fault Diagnosis Using Immunity
    Yuling Tian
    Xiangyu Liu
    Tsinghua Science and Technology, 2019, 24 (06) : 750 - 762
  • [50] A deep feature enhanced reinforcement learning method for rolling bearing fault diagnosis
    Wang, Ruixin
    Jiang, Hongkai
    Zhu, Ke
    Wang, Yanfeng
    Liu, Chaoqiang
    ADVANCED ENGINEERING INFORMATICS, 2022, 54