Design, computational and experimental investigation of a small-scale turbopump for organic Rankine cycle systems

被引:4
|
作者
Zakeralhoseini, Sajjad [1 ]
Schiffmann, Juerg [1 ]
机构
[1] Ecole Polytech Fed Lausanne EPFL, Lab Appl Mech Design, CH-1015 Lausanne, Switzerland
关键词
Small-scale turbopump; Organic Rankine cycle; Computational fluid dynamics; Experimental characteristics; Unshrouded impeller; Cavitation; WASTE HEAT; WORKING FLUID; PUMP; ORC; PERFORMANCE; OPTIMIZATION;
D O I
10.1016/j.enconman.2023.117073
中图分类号
O414.1 [热力学];
学科分类号
摘要
The hydraulic design, computational analysis, and experimental investigations of a high-speed small-scale tur-bopump for mobile waste heat recovery applications based on organic Rankine cycle systems are presented in this paper. Such applications demand high-pressure rise, lightweight, and compact pumping systems with simple construction. The investigated turbopump features an unshrouded 37.75 mm tip diameter single-stage centrif-ugal pump equipped with eight radial blades, eight splitters blades, and a rectangular axisymmetric volute. The pump should deliver 0.28 kg/s of mass flow rate with a pressure rise of 20 bar at a designed rotational speed of 25,000 rpm. Due to uncertainties observed in employing state-of-the-art 1-d methods that are valid for much larger machines, computational fluid dynamics is utilized to obtain a design meeting the specifications. The pump's performance is evaluated experimentally at different rotational speeds, mass flow rates, and impeller tip clearances. The excellent agreement between experimental data and predictions from computational fluid dy-namics validates the design methodology and computational results. The turbopump's characteristics are then utilized to estimate the possible performance improvement of a target organic Rankine cycle using the novel turbopump instead of a commercial multi-stage centrifugal pump. The comparison suggests that the novel tur-bopump increases the efficiency of the target organic Rankine cycle by 0.3 % points and decreases its back-work ratio by nearly 50 %. The novel turbopump is approximately ten times more compact compared to commercial systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] GEOTHERMAL ENERGY FOR SMALL-SCALE POWER GENERATION USING AN ORGANIC RANKINE CYCLE
    Hessami, Mir Akbar
    PROCEEDINGS OF THE ASME 6TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY - 2012, PTS A AND B, 2012, : 837 - 846
  • [32] Investigation on a small-scale pumpless Organic Rankine Cycle (ORC) system driven by the low temperature heat source
    Jiang, L.
    Lu, H. T.
    Wang, L. W.
    Gao, P.
    Zhu, F. Q.
    Wang, R. Z.
    Roskilly, A. P.
    APPLIED ENERGY, 2017, 195 : 478 - 486
  • [33] Iterative Approach for the Design of an Organic Rankine Cycle based on Thermodynamic Process Simulations and a Small-Scale Test Rig
    Kuboth, Sebastian
    Neubert, Marc
    Preissinger, Markus
    Brueggemann, Dieter
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 18 - 25
  • [34] Numerical predicting the dynamic behavior of heat exchangers for a small-scale Organic Rankine Cycle
    Liu, Liuchen
    Pan, Yu
    Zhu, Tong
    Gao, Naiping
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 419 - 426
  • [35] Development of Small-scale Organic Rankine Cycle System and Study on its Operating Characteristics
    Yun, Eunkoo
    Kim, Hyun Dong
    Yoon, Sang Youl
    Kim, Kyung Chun
    TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2013, 37 (10) : 919 - 926
  • [36] Dynamic Modeling and Comparison Study of Control Strategies of a Small-Scale Organic Rankine Cycle
    Zhou, Yuhao
    Ruan, Jiongming
    Hong, Guotong
    Miao, Zheng
    ENERGIES, 2022, 15 (15)
  • [37] Novel parabolic trough collectors driving a small-scale organic Rankine cycle system
    Kohlenbach, P.
    McEvoy, S.
    Stein, W.
    Burton, A.
    Wong, K.
    Lovegrove, K.
    Burgess, G.
    Joe, W.
    Coventry, J.
    PROCEEDINGS OF THE ENERGY SUSTAINABILITY CONFERENCE 2007, 2007, : 995 - 1003
  • [38] Modelling and optimization of organic Rankine cycle based on a small-scale radial inflow turbine
    Rahbar, Kiyarash
    Mahmoud, Saad
    Al-Dadah, Raya K.
    Moazami, Nima
    ENERGY CONVERSION AND MANAGEMENT, 2015, 91 : 186 - 198
  • [39] Analysis of a novel gravity driven organic Rankine cycle for small-scale cogeneration applications
    Li, Jing
    Pei, Gang
    Li, Yunzhu
    Ji, Jie
    APPLIED ENERGY, 2013, 108 : 34 - 44
  • [40] Experimental analysis of a small-scale scroll expander for low-temperature waste heat recovery in Organic Rankine Cycle
    Campana, Claudio
    Cioccolanti, Luca
    Renzi, Massimiliano
    Caresana, Flavio
    ENERGY, 2019, 187