Novelty class detection in machine learning-based condition diagnosis

被引:1
|
作者
Yu, Hyeon Tak [1 ]
Park, Dong Hee [1 ]
Lee, Jeong Jun [1 ]
Kim, Hyeon Sik [2 ]
Choi, Byeong Keun [1 ]
机构
[1] Gyeongsang Natl Univ, Dept Energy & Mech Engn, 2 Tongyeonghaean Ro, Tongyeong Si 53064, South Korea
[2] Mattron Corp, Changwon Si, Gyeongsangnam D, South Korea
关键词
Condition diagnosis; Anomaly detection; Support vector machine; Principal component analysis; Industrial plant machines; FAULT-DIAGNOSIS; PREDICTIVE MAINTENANCE; SYSTEM;
D O I
10.1007/s12206-023-0201-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Industrial plant machines have a significantly lower frequency of defective data than the frequency of normal data. For this reason, machine learning is often applied using only some obtained state data. However, the low frequency of defect data does not guarantee that novel data occur, which is why detection of novelty class is required. This paper studies the novelty class detection method in multi-classification. Multi-class support vector machine was used for multi-classification. Cluster-based local outlier factor, histogram-based outlier score, outlier detection with minimum covariance determinant, isolation forest, and one-class support vector machine applied novelty class detection. Anomaly detection algorithms used the hard voting ensemble method. A feature engineering method that is advantageous for novelty class detection was confirmed by comparing the genetic algorithm (GA)-based feature selection and principal component analysis (PCA). Findings show that creating a model using GA-based feature selection for multi-classification and independent PCA for each class for novelty class detection is advantageous. With the use of an independent PCA, the problem was simplified to perform detection on a novelty class with a condition similar to the trained class.
引用
收藏
页码:1145 / 1154
页数:10
相关论文
共 50 条
  • [21] Machine Learning-Based Fault Detection and Diagnosis of Faulty Power Connections of Induction Machines
    Gonzalez-Jimenez, David
    del-Olmo, Jon
    Poza, Javier
    Garramiola, Fernando
    Sarasola, Izaskun
    ENERGIES, 2021, 14 (16)
  • [22] Machine Learning-Based Research for COVID-19 Detection, Diagnosis, and Prediction: A Survey
    Meraihi Y.
    Gabis A.B.
    Mirjalili S.
    Ramdane-Cherif A.
    Alsaadi F.E.
    SN Computer Science, 3 (4)
  • [23] Machine Learning-Based Classification Models for Diagnosis of Diabetes
    Jaiswal S.
    Jaiswal T.
    Recent Advances in Computer Science and Communications, 2022, 15 (06) : 813 - 821
  • [24] Machine learning-based classification and diagnosis of clinical cardiomyopathies
    Alimadadi, Ahmad
    Manandhar, Ishan
    Aryal, Sachin
    Munroe, Patricia B.
    Joe, Bina
    Cheng, Xi
    PHYSIOLOGICAL GENOMICS, 2020, 52 (09) : 391 - 400
  • [25] Machine learning-based scheme for multi-class fault detection in turbine engine disks
    Garcia, Carla E.
    Camana, Mario R.
    Koo, Insoo
    ICT EXPRESS, 2021, 7 (01): : 15 - 22
  • [26] Machine Learning-Based Mobile Threat Monitoring and Detection
    Hatcher, William G.
    Maloney, David
    Yu, Wei
    2016 IEEE/ACIS 14TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING RESEARCH, MANAGEMENT AND APPLICATIONS (SERA), 2016, : 67 - 73
  • [27] Machine Learning-Based Front Detection in Central Europe
    Bochenek, Bogdan
    Ustrnul, Zbigniew
    Wypych, Agnieszka
    Kubacka, Danuta
    ATMOSPHERE, 2021, 12 (10)
  • [28] Machine Learning-Based Approach for Fake News Detection
    Gururaj H.L.
    Lakshmi H.
    Soundarya B.C.
    Flammini F.
    Janhavi V.
    Journal of ICT Standardization, 2022, 10 (04): : 509 - 530
  • [29] Machine Learning-Based Crop Stress Detection in Greenhouses
    Elvanidi, Angeliki
    Katsoulas, Nikolaos
    PLANTS-BASEL, 2023, 12 (01):
  • [30] Machine Learning-Based Anomaly Detection Techniques in Ophthalmology
    Lu, Randy Y.
    Bagdasarova, Yelena
    Lee, Aaron Y.
    JAMA OPHTHALMOLOGY, 2022, 140 (02) : 189 - 190