Prediction of Global Horizontal Irradiance Using an Explainable Data Driven Machine Learning Algorithms

被引:6
|
作者
Gupta, Rahul [1 ]
Yadav, Anil Kumar [2 ]
Jha, Shyama Kant [3 ]
机构
[1] Netaji Subhas Univ Technol, Dept Elect Engn, New Delhi, India
[2] Dr BR Ambedkar Natl Inst Technol Jalandhar, Dept Instrumentat & Control Engn, Jalandhar, Punjab, India
[3] Netaji Subhas Univ Technol, Dept Instrumentat & Control Engn, New Delhi, India
关键词
global horizontal irradiance; extra trees regressor; shapely additive explanation; variance inflation factor; estimation; SOLAR-RADIATION; RANDOM FOREST; REGRESSION; NETWORK; ERROR; MODEL;
D O I
10.1080/15325008.2024.2310771
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Estimating global horizontal irradiance (GHI) with a high level of accuracy and precision is very challenging due to the volatile climate parameters and location constraints. To overcome this challenge, several machine learning (ML)-based techniques such as Decision Trees (DT), Random Forest (RF), Extreme Gradient Boosting (XGB), and Extra Trees (ET) are implemented to forecast the GHI. The first stage of model development is to select the optimal subset of features by using the variance inflation factor feature selection method. In the second stage, the selected features are fed into the ML models and trained. The predictive performance of the ML models is improved the result of removal of insignificant input features. The predictive accuracy of the ML models is compared and evaluated by performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and coefficient of determination (R2). Conclusively, after feature selection it is seen that the ET algorithm outperforms the others because of its lowest MAE and RMSE value of 3.01 and 1.748, respectively, as compared to the other models, indicating its relevancy, legitimacy, and viability for the estimation of GHI. The higher R2 value of 0.99 obtained by the ET model indicates that it is best fitted with the dataset. Additionally, optimal shapely additive explanation values have been used as feature attributions for determining the magnitude and direction of the impact of each feature on the outcome.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Data-Driven Prognostication in Distal Medium Vessel Occlusions Using Explainable Machine Learning
    Karabacak, Mert
    Ozkara, Burak Berksu
    Faizy, Tobias D.
    Hardigan, Trevor
    Heit, Jeremy J.
    Lakhani, Dhairya A.
    Margetis, Konstantinos
    Mocco, J.
    Nael, Kambiz
    Wintermark, Max
    Yedavalli, Vivek S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2025, 46 (04) : 725 - 732
  • [32] Diabetes prediction using machine learning and explainable AI techniques
    Tasin, Isfafuzzaman
    Nabil, Tansin Ullah
    Islam, Sanjida
    Khan, Riasat
    HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (1-2) : 1 - 10
  • [33] A Comparative Study of Machine Learning-Based Methods for Global Horizontal Irradiance Forecasting
    Gbemou, Shab
    Eynard, Julien
    Thil, Stephane
    Guillot, Emmanuel
    Grieu, Stephane
    ENERGIES, 2021, 14 (11)
  • [34] Integrating multiple data sources for improved flight delay prediction using explainable machine learning
    Pineda-Jaramillo, Juan
    Munoz, Claudia
    Mesa-Arango, Rodrigo
    Gonzalez-Calderon, Carlos
    Lange, Anne
    RESEARCH IN TRANSPORTATION BUSINESS AND MANAGEMENT, 2024, 56
  • [35] Exploring influence of groundwater and lithology on data-driven stability prediction of soil slopes using explainable machine learning: a case study
    Wen Gao
    Mingdong Zang
    Gang Mei
    Bulletin of Engineering Geology and the Environment, 2024, 83
  • [36] Explainable forecasting of global horizontal irradiance over multiple time steps using temporal fusion transformer
    Mouloud, Louiza Ait
    Kheldoun, Aissa
    Deboucha, Abdelhakim
    Mekhilef, Saad
    JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2023, 15 (05)
  • [37] Exploring influence of groundwater and lithology on data-driven stability prediction of soil slopes using explainable machine learning: a case study
    Gao, Wen
    Zang, Mingdong
    Mei, Gang
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2024, 83 (01)
  • [38] Predicting the risk of diabetic retinopathy using explainable machine learning algorithms
    Islam, Md. Merajul
    Rahman, Md. Jahanur
    Rabby, Md. Symun
    Alam, Md. Jahangir
    Pollob, S. M. Ashikul Islam
    Ahmed, N. A. M. Faisal
    Tawabunnahar, Most.
    Roy, Dulal Chandra
    Shin, Junpil
    Maniruzzaman, Md.
    DIABETES & METABOLIC SYNDROME-CLINICAL RESEARCH & REVIEWS, 2023, 17 (12)
  • [39] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [40] Stock Prediction Using Machine Learning Algorithms
    Kohli, Pahul Preet Singh
    Zargar, Seerat
    Arora, Shriya
    Gupta, Parimal
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 405 - 414