FEATURE SELECTION ON SENTINEL-2 MULTI-SPECTRAL IMAGERY FOR EFFICIENT TREE COVER ESTIMATION

被引:0
|
作者
Nazir, Usman [1 ]
Uppal, Momin [1 ]
Tahir, Muhammad [1 ]
Khalid, Zubair [1 ]
机构
[1] Lahore Univ Management Sci LUMS, Dept Elect Engn, Syed Babar Ali Sch Sci & Engn, Lahore, Pakistan
关键词
Random Forest Classifier; Spectral Indices; Sentinel-2; Satellite; European Space Agency (ESA) WorldCover; DeepLabv3; DIFFERENCE WATER INDEX; NDWI;
D O I
10.1109/IGARSS52108.2023.10283235
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
This paper proposes a multi-spectral random forest classifier with suitable feature selection and masking for tree cover estimation in urban areas. The key feature of the proposed classifier is filtering out the built-up region using spectral indices followed by random forest classification on the remaining mask with carefully selected features. Using Sentinel-2 satellite imagery, we evaluate the performance of the proposed technique on a specified area (approximately 82 acres) of Lahore University of Management Sciences (LUMS) and demonstrate that our method outperforms a conventional random forest classifier as well as state-of-the-art methods such as European Space Agency (ESA) WorldCover 10m 2020 product as well as a DeepLabv3 deep learning architecture.
引用
收藏
页码:2946 / 2949
页数:4
相关论文
共 50 条
  • [41] Estimation of barley yield from Sentinel-1 and sentinel-2 imagery and climatic variables
    Iranzo, Cristian
    Montorio, Raquel
    Garcia-Martin, Alberto
    REVISTA DE TELEDETECCION, 2022, (59): : 61 - 72
  • [42] Estimating cover crop biomass nitrogen credits with Sentinel-2 imagery and sites covariates
    Xia, Yushu
    Guan, Kaiyu
    Copenhaver, Ken
    Wander, Michelle
    AGRONOMY JOURNAL, 2021, 113 (02) : 1084 - 1101
  • [43] Land Cover Classification Using Interval Type-2 Fuzzy Clustering for Multi-spectral Satellite Imagery
    Long Thanh Ngo
    Dzung Dinh Nguyen
    PROCEEDINGS 2012 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2012, : 2371 - 2376
  • [44] Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data
    Pereira-Sandoval, Marcela
    Ruescas, Ana
    Urrego, Patricia
    Ruiz-Verdu, Antonio
    Delegido, Jesus
    Tenjo, Carolina
    Soria-Perpinya, Xavier
    Vicente, Eduardo
    Soria, Juan
    Moreno, Jose
    REMOTE SENSING, 2019, 11 (12)
  • [45] Analysis of signal-dependent sensor noise on JPEG 2000-compressed Sentinel-2 multi-spectral images
    Uss, M.
    Vozel, B.
    Lukin, V.
    Chehdi, K.
    IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XXIII, 2017, 10427
  • [46] Multi-spectral multi-image super-resolution of Sentinel-2 with radiometric consistency losses and its effect on building delineation
    Razzak, Muhammed T.
    Mateo-Garcia, Gonzalo
    Lecuyer, Gurvan
    Gomez-Chova, Luis
    Gal, Yarin
    Kalaitzis, Freddie
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 195 : 1 - 13
  • [47] Automated Production of a Land Cover/Use Map of Europe Based on Sentinel-2 Imagery
    Malinowski, Radek
    Lewinski, Stanislaw
    Rybicki, Marcin
    Gromny, Ewa
    Jenerowicz, Malgorzata
    Krupinski, Michal
    Nowakowski, Artur
    Wojtkowski, Cezary
    Krupinski, Marcin
    Kraetzschmar, Elke
    Schauer, Peter
    REMOTE SENSING, 2020, 12 (21) : 1 - 27
  • [48] Land cover classification in Romanian Carpathians and Subcarpathians using multi-date Sentinel-2 remote sensing imagery
    Rujoiu-Mare, Marina-Ramona
    Olariu, Bogdan
    Mihai, Bogdan-Andrei
    Nistor, Constantin
    Savulescu, Ionut
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 496 - 508
  • [49] Forest Land Cover Mapping at a Regional Scale Using Multi-Temporal Sentinel-2 Imagery and RF Models
    Alonso, Laura
    Picos, Juan
    Armesto, Julia
    REMOTE SENSING, 2021, 13 (12)
  • [50] Deep learning for multi-modal classification of cloud, shadow and land cover scenes in PlanetScope and Sentinel-2 imagery
    Shendryk, Yuri
    Rist, Yannik
    Ticehurst, Catherine
    Thorburn, Peter
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 157 : 124 - 136