Controlled synthesis of hollow carbon ring incorporated g-C3N4 tubes for boosting photocatalytic H2O2 production

被引:56
|
作者
Luo, Hao [1 ]
Shan, Tianshang [1 ]
Zhou, Jianwen [1 ]
Huang, Liulian [1 ]
Chen, Lihui [1 ]
Sa, Rongjian [2 ]
Yamauchi, Yusuke [3 ,4 ,5 ,6 ]
You, Jungmok
Asakura, Yusuke [3 ]
Yuan, Zhanhui [1 ]
Xiao, He [1 ]
机构
[1] Fujian Agr & Forestry Univ, Coll Mat Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Minjiang Univ, Coll Mat & Chem Engn, Fuzhou 350108, Peoples R China
[3] Nagoya Univ, Grad Sch Engn, Dept Mat Proc Engn, Furo Cho,Chikusa Ku, Nagoya 4648603, Japan
[4] Univ Queensland, Sch Chem Engn, Brisbane, Qld 4072, Australia
[5] Univ Queensland, Australian Inst Bioengn & Nanotechnol AIBN, Brisbane, Qld 4072, Australia
[6] Kyung Hee Univ, Coll Life Sci, Dept Plant & Environm New Resources, 1732 Deogyeong Daero, Yongin 17104, Gyeonggi Do, South Korea
基金
中国博士后科学基金;
关键词
Carbon nitride; Photocatalytic; Hydrogen peroxide; Carbon rings; HYDROGEN-PEROXIDE; OXYGEN REDUCTION; NITRIDE; NANOSHEETS; WATER; EVOLUTION; NANOSTRUCTURES; SEPARATION; NANOTUBES; DEFECTS;
D O I
10.1016/j.apcatb.2023.122933
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
H2O2 production through solar-driven photocatalytic route has received increasing attention. Herein, a carbon ring incorporated hollow g-C3N4 tubes (CHCN) was successfully fabricated via a novel supramolecular selfassembly strategy, co-inducing by hydrogen bond and covalent bond. The optimum H2O2 yield over the CHCN-0.02 reached up to 1.58 mmol L-1 h-1 (AQE= 28.10%, 420 nm), which was 5.4 times significantly higher than that of bulk g-C3N4 (0.29 mmol L-1 h-1) under visible light irradiation. Experimental and density functional theory (DFT) calculations revealed that the CHCNs not only expedited the charge carrier transfer/separation but also favored molecular oxygen adsorption and regulated bandgap structure under the in-plane electronic field induced by continuous & pi;-conjugated Cring, which boosted the ORR efficiency for photocatalytic H2O2 synthesis. The optimized CHCN catalyst demonstrated adequate hybrid ORR routes, consisting of a dominated selective one-step two-electron ORR pathway and highly efficient two-step single-electron ORR for H2O2 production. Therefore, this work not only provides a new strategy for an efficient H2O2 formation using a g-C3N4-based photocatalyst but also explores the functionary mechanism of the ORR process and enlightens the way to highly efficient H2O2 generation.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets
    Weikang Wang
    Wei Zhang
    Yueji Cai
    Qing Wang
    Juan Deng
    Jingsheng Chen
    Zhifeng Jiang
    Yizhou Zhang
    Chao Yu
    Nano Research, 2023, 16 (2) : 2177 - 2184
  • [32] Introducing B-N unit boosts photocatalytic H2O2 production metal-free g-C3N4 nanosheets
    Wang, Weikang
    Zhang, Wei
    Cai, Yueji
    Wang, Qing
    Deng, Juan
    Chen, Jingsheng
    Jiang, Zhifeng
    Zhang, Yizhou
    Yu, Chao
    NANO RESEARCH, 2023, 16 (02) : 2177 - 2184
  • [33] Introducing B-N unit boosts photocatalytic H2O2 production on metal-free g-C3N4 nanosheets
    Wang, Weikang
    Zhang, Wei
    Cai, Yueji
    Wang, Qing
    Deng, Juan
    Chen, Jingsheng
    Jiang, Zhifeng
    Zhang, Yizhou
    Yu, Chao
    NANO RESEARCH, 2022,
  • [34] H2O2 production and in situ sterilization over a ZnO/g-C3N4 heterojunction photocatalyst
    Geng, Xinle
    Wang, Li
    Zhang, Lu
    Wang, Hui
    Peng, Yiyin
    Bian, Zhaoyong
    CHEMICAL ENGINEERING JOURNAL, 2021, 420
  • [35] Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production
    Peng, Yulan
    Zhou, Liang
    Wang, Lingzhi
    Lei, Juying
    Liu, Yongdi
    Daniele, Stephane
    Zhang, Jinlong
    RESEARCH ON CHEMICAL INTERMEDIATES, 2019, 45 (12) : 5907 - 5917
  • [36] Preparation of NiCoP-decorated g-C3N4 as an efficient photocatalyst for H2O2 production
    Yulan Peng
    Liang Zhou
    Lingzhi Wang
    Juying Lei
    Yongdi Liu
    Stéphane Daniele
    Jinlong Zhang
    Research on Chemical Intermediates, 2019, 45 : 5907 - 5917
  • [37] Construction of g-C3N4 with three coordinated nitrogen (N3C) vacancies for excellent photocatalytic activities of N2 fixation and H2O2 production
    Xue, Yanjun
    Ma, Chaoqun
    Yang, Qingfeng
    Wang, Xinyu
    An, Shanna
    Zhang, Xiaoli
    Tian, Jian
    CHEMICAL ENGINEERING JOURNAL, 2023, 457
  • [38] Synthesis of Double Defects in g-C3N4 to Enhance the H2O2 Production by Dual-Electron O2 Reduction
    Li, Renjie
    Deng, Qunfen
    Chen, Anli
    Zhong, Yujia
    Yang, Rui
    CHEMSUSCHEM, 2023, 16 (23)
  • [39] Dissolution of g-C3N4 Using Zinc Chloride Molten Salt Hydrates for Nanobelt Fabrication and Photocatalytic H2O2 Production
    Shen, Dazhi
    Imbault, Alexander Luis
    Balati, Gulimire
    Ouyang, Jie
    Li, Yunhua
    CHEMISTRY-A EUROPEAN JOURNAL, 2024, 30 (48)
  • [40] Isotype junctioned nanotubes and nanosheets of g-C3N4 for enhanced visible-light driven photocatalytic H2O2 production
    Yunxiao Zhang
    Mengfan Fang
    Xiaorong Qian
    Li Zhang
    Pei Gu
    Yu Liu
    Haihua Yang
    Journal of Materials Research, 2021, 36 : 3495 - 3505