Intelligent Task Offloading Method using Deep Q-Network for Collaborative Edge Computing System

被引:0
|
作者
Youn, Joosang [1 ]
机构
[1] Dong Eui Univ, Dept Ind ICT Engn, Busan, South Korea
关键词
edge computing; offloading; Deep Q-network; RESOURCE-ALLOCATION;
D O I
10.1109/ICAIIC57133.2023.10067111
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, various applications using artificial intelligence (AI) are deployed in edge network. In particular, An intelligence applications demanded with high computation and low end-to-end latency are executed on edge computing environments. Thus, in this paper, for the optimization of the resource of edge servers in multi-edge network environments, we propose the intelligent task offloading method based on Deep Q-network that can optimize computation capability of the multi-edge computing environments. For this, first at all, we formulate the problem of multi-edge computing allocation with a Markov decision process and propose the policy for allocating edge resource adopting a deep reinforcement learning algorithm. In the simulation, the results show the proposed method gets a better performance in terms of the end-to-end latency of the offloaded task than the existing methods.
引用
收藏
页码:872 / 875
页数:4
相关论文
共 50 条
  • [31] Collaborative Cloud-Edge-End Task Offloading in NOMA-Enabled Mobile Edge Computing Using Deep Learning
    Du, RuiZhong
    Liu, Cui
    Gao, Yan
    Hao, PengNan
    Wang, ZiYuan
    JOURNAL OF GRID COMPUTING, 2022, 20 (02)
  • [32] Collaborative Cloud-Edge-End Task Offloading in NOMA-Enabled Mobile Edge Computing Using Deep Learning
    RuiZhong Du
    Cui Liu
    Yan Gao
    PengNan Hao
    ZiYuan Wang
    Journal of Grid Computing, 2022, 20
  • [33] Impatient Queuing for Intelligent Task Offloading in Multiaccess Edge Computing
    Han, Bin
    Sciancalepore, Vincenzo
    Xu, Yihua
    Feng, Di
    Schotten, Hans D.
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2023, 22 (01) : 59 - 72
  • [34] Intelligent Task Offloading for Smart Devices in Mobile Edge Computing
    Saleem, Osama
    Munawar, Suleman
    Tu, Shanshan
    Ali, Zaiwar
    Waqas, Muhammad
    Abbas, Ghulam
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 312 - 317
  • [35] Satellite Edge Computing With Collaborative Computation Offloading: An Intelligent Deep Deterministic Policy Gradient Approach
    Zhang, Hangyu
    Liu, Rongke
    Kaushik, Aryan
    Gao, Xiangqiang
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (10) : 9092 - 9107
  • [36] A Task Offloading Scheme in Maritime Edge Computing Network
    Yue G.
    Huang C.
    Xiong X.
    Journal of Communications and Information Networks, 2023, 8 (02) : 171 - 186
  • [37] Q-Learning-Based Task Offloading and Resources Optimization for a Collaborative Computing System
    Gao, Zihan
    Hao, Wanming
    Han, Zhuo
    Yang, Shouyi
    IEEE ACCESS, 2020, 8 (08): : 149011 - 149024
  • [38] Deep Q-Learning-Based Dynamic Network Slicing and Task Offloading in Edge Network
    Chiang, Yao
    Hsu, Chih-Ho
    Chen, Guan-Hao
    Wei, Hung-Yu
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2023, 20 (01): : 369 - 384
  • [39] On Joint Offloading and Resource Allocation: A Double Deep Q-Network Approach
    Khoramnejad, Fahime
    Erol-Kantarci, Melike
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2021, 7 (04) : 1126 - 1141
  • [40] Dependent Task Offloading in Edge Computing Using GNN and Deep Reinforcement Learning
    Cao, Zequn
    Deng, Xiaoheng
    Yue, Sheng
    Jiang, Ping
    Ren, Ju
    Gui, Jinsong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21632 - 21646