Adsorption and Gas-Sensing Performance of the Small-Molecule Gas on ZrSe2 Monolayers: A First-Principles Study

被引:8
|
作者
Liu, Kui [1 ]
Lin, Long [1 ,2 ]
Xie, Kun [1 ]
Shi, Pei [1 ]
Xu, Dongxia [3 ]
机构
[1] Henan Polytech Univ, Sch Mat Sci & Engn, Cultivating Base Key Lab Environm Friendly Inorgan, Jiaozuo 454000, Peoples R China
[2] Henan Polytech Univ, Sch Math & Informat, Jiaozuo 454000, Peoples R China
[3] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454000, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
DOPED GRAPHENE; NO; CO; INSIGHT; MOS2;
D O I
10.1021/acs.langmuir.3c00964
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The adsorption of five small gasmolecules (CO, CO2,NO, NO2, and NH3) on transition metal (TM)-modifiedZrSe(2) monolayers (Au-ZrSe2 and Pt-ZrSe2) are studied based on first principles. The adsorption structure,adsorption energy (E (ads)), electron transfer(Q (t)), and density of states (DOS) withintrinsic ZrSe2, Au-ZrSe2, and Pt-ZrSe2 monolayers are discussed, and their sensing performance is evaluated.The results show that the electrical conductivity of ZrSe2 is obviously increased after Au and Pt atom modification. The intrinsicZrSe(2) adsorbs the five kinds of gas molecules weakly, whileZrSe(2) modified by the Au or Pt atom improves the adsorptionof the gas molecules in different degrees. Au-ZrSe2 hasthe best adsorption effect on NO2 gas molecules, whilePt-ZrSe2 shows strong sensitivity to CO gas molecules.Moreover, Au-ZrSe2 and Pt-ZrSe2 are of greatsignificance for the adsorption sensing mechanism and also offer prospectivematerials for the advancement of gas-sensitive sensors.
引用
收藏
页码:8879 / 8888
页数:10
相关论文
共 50 条
  • [21] Gas Sensing of Monolayer GeSe: A First-Principles Study
    Zhuang, Qinqin
    Yang Weihuang
    Lin, Wei
    Dong, Linxi
    Zhou, Changjie
    NANO, 2019, 14 (10)
  • [22] First-principles study of the small molecule adsorption on the InSe monolayer
    Ma, Dongwei
    Ju, Weiwei
    Tang, Yanan
    Chen, Yue
    APPLIED SURFACE SCIENCE, 2017, 426 : 244 - 252
  • [23] Highly sensitive gas sensing material for polar gas molecule based on Janus group-Ⅲ chalcogenide monolayers: A first-principles investigation
    PANG KaiJuan
    WEI YaDong
    LI WeiQi
    ZHOU Xin
    JIANG YingJie
    YANG JianQun
    LI XingJi
    GAO Lang
    JIANG YongYuan
    Science China(Technological Sciences), 2020, 63 (08) : 1566 - 1576
  • [24] Highly sensitive gas sensing material for polar gas molecule based on Janus group-Ⅲ chalcogenide monolayers: A first-principles investigation
    PANG KaiJuan
    WEI YaDong
    LI WeiQi
    ZHOU Xin
    JIANG YingJie
    YANG JianQun
    LI XingJi
    GAO Lang
    JIANG YongYuan
    Science China(Technological Sciences) , 2020, (08) : 1566 - 1576
  • [25] Enhanced gas sensing performance of polyaniline incorporated with graphene: A first-principles study
    Guo, Zhi
    Liao, Ningbo
    Zhang, Miao
    Feng, Aixin
    PHYSICS LETTERS A, 2019, 383 (23) : 2751 - 2754
  • [26] Adsorption and sensing properties of ZrSe2 monolayer modified with transition metal for CO2, NO2 and SO2 gases: First-principles calculations
    Liu, Kui
    Lin, Long
    Wang, Yanfang
    MATERIALS TODAY COMMUNICATIONS, 2023, 36
  • [27] Effects of the vacancy and doping on the electronic and magnetic characteristics of ZrSe2 monolayer: A first-principles investigation
    Gao, Xiang-Yu
    Zhang, Jian-Min
    Ali, Anwar
    Wei, Xiu-Mei
    Huang, Yu-Hong
    THIN SOLID FILMS, 2021, 732
  • [28] First-principles prediction of strain-induced gas-sensing tuning in tin sulfide
    Qin, Yuxiang
    Shen, Xin
    Bai, Yinan
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (34) : 18712 - 18723
  • [29] A first-principles study: Adsorption of small gas molecules on GeP3 monolayer
    Niu Fanfan
    Cai Miao
    Pang Jiu
    Li Xiaoling
    Zhang Guoqi
    Yang Daoguo
    SURFACE SCIENCE, 2019, 684 : 37 - 43
  • [30] Adsorption of NO gas molecule on the vacancy defected and transition metal doped antimonene: A first-principles study
    Chen, Guo-Xiang
    Du, Rui-Yun
    Wang, Dou-Dou
    Chen, Zhe
    Liu, Shuai
    Zhang, Jian-Min
    VACUUM, 2023, 207